DOI QR코드

DOI QR Code

Inhibitory effect of cinnamon (Cinnamomum cassia Presl) extract and cinnamaldehyde on alcohol dehydrogenase

계피(Cinnamomum cassia Presl) 추출물과 cinnamaldehyde의 alcohol dehydrogenase 저해 효과

  • Do, Jaeho (Korea Ginseng MFG Co., Ltd) ;
  • In, Man-Jin (Department of Chemical Engineering, Chungwoon University) ;
  • Kim, Dong Chung (Department of Chemical Engineering, Chungwoon University)
  • Received : 2022.08.08
  • Accepted : 2022.08.22
  • Published : 2022.09.30

Abstract

The hot water extract from cinnamon (Cinnamomum cassia Presl) inhibited the activity of alcohol dehydrogenase (ADH) with IC50 value of 45.6 ㎍/mL. The ADH inhibitory components in cinnamon extract were relatively stable to acid and heat, but were found to be volatile. The optimum temperature and time for extracting the ADH inhibitory components from cinnamon were 80 ℃ and 2 h, respectively. Among the essential oils of cinnamon, cinnamaldehyde was the main substance for ADH inhibition. Cinnamaldehyde is considered a competitive inhibitor of ethanol to ADH. Therefore, the cinnamon extract and cinnamaldehyde showed the potential to be used as natural materials for relieving symptoms of a hangover.

계피(Cinnamomum cassia Presl)의 열수 추출물은 alcohol dehydrogenase (ADH)의 활성을 저해하였고 IC50값은 45.6 ㎍/mL이었다. 계피 추출물의 ADH 저해 성분은 산과 열에 비교적 안정하였으나 휘발성을 가진 물질로 나타났다. 계피에서 ADH 저해 물질의 추출을 위한 최적 온도와 시간은 각각 80 ℃와 2시간이었다. 계피의 정유 성분 중 cinnamaldehyde가 ADH 저해의 주된 물질이었다. Cinnamaldehyde는 기질인 에탄올에 대해 ADH 활성의 경쟁적 저해제로 여겨진다. 따라서 계피 열수 추출물과 cinnamaldehyde는 ADH의 활성을 효과적으로 저해하는 숙취해소 천연소재로서의 활용가능성을 보여주었다.

Keywords

Acknowledgement

본 연구는 2022학년도 청운대학교 학술연구조성비 지원에 의해 수행된 것입니다.

References

  1. Xu BJ, Zheng YN, Sung CK (2005) Natural medicines for alcoholism treatment: a review. Drug Alcohol Rev 24: 525-536. doi: 10.1080/09595230500293795
  2. Lieber CS (1997) Ethanol metabolism, cirrhosis and alcoholism. Clin Chim Acta 257: 59-84. doi: 10.1016/s0009-8981(96)06434-0
  3. Willner IR, Reuben A (2005) Alcohol and the liver. Curr Opin Gastroenterol 21: 323-330. doi: 10.1097/01.mog.0000160044.87933.87
  4. Ronis MJ, Huang J, Crouch J, Mercado C, Irby D, Valentine CR, Lumpkin CK, Ingelman-Sundberg M, Badger TM (1993) Cytochrome P450 CYP 2E1 induction during chronic alcohol exposure occurs by a two-step mechanism associated with blood alcohol concentration in rats. J Pharmacol Exp Ther 264: 944-950
  5. Choi JY, Joo CN (1993) Probable reaction mechanism of rat liver cytosolic ALDH. Korean Biochem J 26: 26-33
  6. An SW, Kim YG, Kim MH, Lee BI, Lee SH, Kwon HI, Hwang B, Lee HY (1999) Comparison of hepatic detoxification activity and reducing serum alcohol concentration of Hovenia dulsis THUNB and Alnus japonica Steud. Korean J Med Crop Sci 7: 263-268
  7. Lee MK, Kim YG, An SW, Kim MH, Lee JH, Lee HY (1999) Biological activity of Hovenia dulcis Thunb. Korean J Med Crop Sci 7: 185-192
  8. Hwang JY, Ham JW, Nam SH (2004) Effect of Maesil (Prunus mume) juice on the alcohol metabolizing enzyme activities. Korean J Food Sci Technol 36: 329-332
  9. Yoo G, Kim S, Choi AR, Son MH, Kim DC, Chae HJ (2009) Effect of Rhus verniciflua stokes extract on the alcohol-metabolizing enzyme activities. Korean Soc Biotech Bioeng J 24: 101-105
  10. Lee HJ, Lee KM (1999) Screening of alcohol dehydrogenase inhibitors from natural products. Yakhak Hoeji 43: 481-486
  11. Moon JS, Kim SJ, Park YM, Hwang IS, Kim EH, Park JW, Park IB, Kim SW, Kang SG, Park YK, Jung ST (2004) Activities of antioxidation and alcohol dehydrogenase inhibition of methanol extracts from some medicinal herbs. Korean J Food Preserv 11: 201-206
  12. Do J, Gwak J, Lee S, Rho JJ, Lee K, Kim DC (2017) Effect of medicinal plant extracts on the ethanol-metabolizing enzyme activities. Food Eng Prog 21: 286-291. doi: 10.13050/foodengprog.2017.21.3.286
  13. Lee HS, Ahn YJ (1998) Growth-inhibiting effects of Cinnamomum cassia bark-derived materials on human intestinal bacteria. J Agric Food Chem 46: 8-12. doi: 10.1021/jf970548y
  14. Lee HS, Kim BS, Kim MK (2002) Suppression effect of Cinnamomum cassia bark-derived component on nitric oxide synthase. J Agric Food Chem 50: 7700-7703. doi: 10.1021/jf020751f
  15. Verspohl EJ, Bauer K, Neddermann E (2005) Antidiabetic effect of Cinnamomum cassia and Cinnamomum zeylanicum in vivo and in vitro. Phytother Res 19: 203-206. doi: 10.1002/ptr.1643
  16. Ka H, Park HJ, Jung HJ, Choi JW, Cho KS, Ha J, Lee KT (2003) Cinnamaldehyde induces apoptosis by ROS-mediated mitochondrial permeability transition in human promyelocytic leukemia HL-60 cells. Cancer Lett 196: 143-152. doi: 10.1016/s0304-3835(03)00238-6
  17. Thamkaew G, Sjoholm I, Galindo FG (2021) A review of drying methods for improving the quality of dried herbs. Crit Rev Food Sci Nutr 11: 1763-1786. doi: 10.1080/10408398.2020.1765309
  18. Calin-Sanchez A, Lech K, Szumny A, Figiel A, Carbonell-Barrachina AA (2012) Volatile composition of sweet basil essential oil (Ocimum basilicum L.) as affected by drying method. Food Res Int 48: 217-225. doi: 10.1016/j.foodres.2012.03.015
  19. Calin-Sanchez A, Figiel A, Lech K, Szumny A, Carbonell-Barrachina AA (2013) Effects of drying methods on the composition of thyme (Thymus vulgaris L.) essential oil. Dry Technol 31: 224-235. doi:10.1080/07373937.2012.725686
  20. Calin-Sanchez A, Szumny A, Figiel A, Jaloszynski K, Adamski M, Carbonell-Barrachina AA (2011) Effects of vacuum level and microwave power on rosemary volatile composition during vacuum-microwave drying. J Food Eng 103: 219-227. doi: 10.1016/j.jfoodeng.2010.10.018
  21. Sulaiman ISC, Basri M, Masoumi HRF, Chee WJ, Ashari SE, Ismail M (2017) Effects of temperature, time, and solvent ratio on the extraction of phenolic compounds and the anti-radical activity of Clinacanthus nutans Lindau leaves by response surface methodology. Chem Cent J 11: 54. doi: 10.1186/s13065-017-0285-1
  22. Mazyan WI, O'Connor E, Martin E, Vogt A, Charter E, Ahmadi A (2021) Effects of temperature and extraction time on avocado flesh (Persea americana) total phenolic yields using subcritical water extraction. Processes 9: 159. doi: 10.3390/pr9010159
  23. Gill AO, Holley RA (2004) Mechanisms of bactericidal action of cinnamaldehyde against Listeria monocytogenes and of eugenol against L. monocytogenes and Lactobacillus sakei. Appl Environ Micorobiol 70: 5750-5755. doi: 10.1128/AEM.70.10.5750-5755.2004
  24. Yossa N, Patel J, Macarisin D, Millner P, Murphy C, Bauchan G, Lo YM (2014) Antibacterial activity of cinnamaldehyde and sporan against Escherichia coli O157:H7 and Salmonella. J Food Process Preserv 38: 749-757. doi: 10.1111/jfpp.12026
  25. Saracino IM, Foschi C, Pavoni M, Spigarelli R, Valerii MC, Spisni E (2022) Antifungal activity of natural compounds vs. Candida spp.: a mixture of cinnamaldehyde and eugenol shows promising in vitro results. Antibiotics 11: 73. doi: 10.3390/antibiotics11010073
  26. Liu L, Wei F, Qu Z, Wang S, Chen G, Gao H, Zhang H, Shang L, Yuan X, Wang Y (2009) The antiadenovirus activities of cinnamaldehyde in vitro. Lab Med 40: 669-674. doi: 10.1309/LMF0U47XNDKBZTRQ
  27. Lineweaver H, Burk D (1934) The determination of enzyme dissociation constants. J Am Chem Soc 56: 658-666. doi: 10.1021/ja01318a036
  28. Li TK, Theorell H (1969) Human liver alcohol dehydrogenase: inhibition by pyrazole and pyrazole analogs. Acta Chem Scand 23: 892-902. doi: 10.3891/acta.chem.scand.23-0892
  29. Keung WM (1993) Biochemical studies of a new class of alcohol dehydrogenase inhibitors from Radix puerariae. Alcohol Clin Exp Res 17: 1254-1260. doi: 10.1111/j.1530-0277.1993.tb05238.x
  30. Plapp BV, Chadha VK, Leidal KG, Cho H, Scholze M, Schindler JF, Berst KB, Ramaswamy S (1999) Uncompetitive inhibitors of alcohol dehydrogenases. Adv Exp Med Biol 463: 295-303. doi: 10.1007/978-1-4615-4735-8_36