DOI QR코드

DOI QR Code

A novel approach for dietary regulation of macrophages through mitochondrial energy metabolism

식품을 이용한 대식세포 에너지 대사 조절

  • Yu, Seungmin (Department of Food Science and Biotechnology, Kyung Hee University) ;
  • Kim, Wooki (Department of Food Science and Biotechnology, Kyung Hee University)
  • 유승민 (경희대학교 식품생명공학과) ;
  • 김우기 (경희대학교 식품생명공학과)
  • Received : 2022.09.02
  • Accepted : 2022.09.19
  • Published : 2022.09.30

Abstract

The regulation of macrophages is a major target for dietary immune modulation for their involvement in both innate and adoptive immune responses. Studies revealed that macrophages are unique in their plasticity to polarize into either inflammatory M1 subset or anti-inflammatory M2 cells. Recently, cellular energy metabolism including both glycolysis and oxidative phosphorylation is demonstrated to control macrophage dichotomy. In this review, the differential utilization of glucose, lipids, amino acids, and irons by M1 and M2 cells are discussed in detail. In addition, several dietary approaches for the alteration of inflammatory M1 cells to M2 phenotypes are reviewed for development of functional foods for immune regulation.

Keywords

References

  1. Batista-Gonzalez A, Vidal R, Criollo A, and Carreno LJ. New Insights on the role of lipid metabolism in the metabolic reprogramming of macrophages. Frontiers in Immunology. 10: 1-7 (2020)
  2. Bhattacharya S, Aggarwal A. M2 macrophages and their role in rheumatic diseases. Rheumatology International. 39: 769-780 (2019) https://doi.org/10.1007/s00296-018-4120-3
  3. Biswas SK, Mantovani A. Orchestration of metabolism by macrophages. Cell Metabolism. 15: 432-437 (2012) https://doi.org/10.1016/j.cmet.2011.11.013
  4. Van den Bossche J, O'Neill LA, Menon D. Macrophage immunometabolism: Where are we (going)? Trends in Immunology. 38: 395-406 (2017) https://doi.org/10.1016/j.it.2017.03.001
  5. Bowdish DME. Macrophage activation and polarization. Encyclopedia of Immunobiology. 1: 289-292 (2016) https://doi.org/10.1016/B978-0-12-374279-7.03002-2
  6. Campbell L, Saville CR, Murray PJ, Cruickshank SM, Hardman MJ. Local arginase 1 activity is required for cutaneous wound healing. Journal of Investigative Dermatology. 133: 2461-2470 (2013) https://doi.org/10.1038/jid.2013.164
  7. Choi S, Yu S, Lee J, Kim W. Effects of neohesperidin dihydrochalcone (NHDC) on oxidative phosphorylation, cytokine production, and lipid deposition. Foods. 10: 1408 (2021) https://doi.org/10.3390/foods10061408
  8. Covarrubias A, Byles V, Horng T. ROS sets the stage for macrophage differentiation. Cell Research. 23: 984-985 (2013) https://doi.org/10.1038/cr.2013.88
  9. Curi R, Mendes R de S, Crispin LA de C, Norata GD, Sampaio SC, Newsholme P. A past and present overview of macrophage metabolism and functional outcomes. Clinical Science. 131: 1329-1342 (2017) https://doi.org/10.1042/CS20170220
  10. Feng J, Han J, Pearce SFA, Silverstein RL, Gotto AM, Hajjar DP, Nicholson AC. Induction of CD36 expression by oxidized LDL and IL-4 by a common signaling pathway dependent on protein kinase C and PPAR-γ. Journal of Lipid Research. 41: 688-698 (2000) https://doi.org/10.1016/S0022-2275(20)32377-4
  11. Fernandes TL, Gomoll AH, Lattermann C, Hernandez AJ, Bueno DF, Amano MT. Macrophage: A potential target on cartilage regeneration. Frontiers in Immunology. 11: 1-9 (2020) https://doi.org/10.3389/fimmu.2020.00001
  12. Freemerman AJ, Johnson AR, Sacks GN, Milner JJ, Kirk EL, Troester MA, Macintyre AN, Goraksha-Hicks P, Rathmell JC, Makowski L. Metabolic reprogramming of macrophages: Glucose transporter 1 (GLUT1)-mediated glucose metabolism drives a proinflammatory phenotype. Journal of Biological Chemistry. 289: 7884-7896 (2014) https://doi.org/10.1074/jbc.M113.522037
  13. Freemerman AJ, Zhao L, Pingili AK, Teng B, Cozzo AJ, Fuller AM, Johnson AR, Milner JJ, Lim MF, Galanko JA, Beck MA, Bear JE, Rotty JD, Bezavada L, Smallwood HS, Puchowicz MA, Liu J, Locasale JW, Lee DP, Bennett BJ, Abel ED, Rathmell JC, Makowski L. Myeloid Slc2a1-deficient murine model revealed macrophage activation and metabolic phenotype are fueled by GLUT1 . The Journal of Immunology. 202: 1265-1286 (2019)
  14. Frostegard J, Ulfgren AK, Nyberg P, Hedin U, Swedenborg J, Andersson U, Hansson GK. Cytokine expression in advanced human atherosclerotic plaques: Dominance of pro-inflammatory (Th1) and macrophage-stimulating cytokines. Atherosclerosis. 145: 33-43 (1999) https://doi.org/10.1016/S0021-9150(99)00011-8
  15. Gaetano C, Massimo L, Alberto M. Control of iron homeostasis as a key component of macrophage polarization. Haematologica. 95: 1801-1803 (2010) https://doi.org/10.3324/haematol.2010.030239
  16. Galvan-Pena S, O'Neill LAJ. Metabolic reprogramming in macrophage polarization. Frontiers in Immunology. 5: 1-6 (2014)
  17. Geeraerts X, Bolli E, Fendt SM, Van Ginderachter JA. Macrophage metabolism as therapeutic target for cancer, atherosclerosis, and obesity. Frontiers in Immunology. 8: 289 (2017)
  18. Ge T, Yang J, Zhou S, Wang Y, Li Y, Tong X. The role of the pentose phosphate pathway in diabetes and cancer. Frontiers in Endocrinology. 11: 1-11 (2020) https://doi.org/10.3389/fendo.2020.00001
  19. Gonzalez-Juarrero M, Shim TS, Kipnis A, Junqueira-Kipnis AP, Orme IM. Dynamics of macrophage cell populations during murine pulmonary tuberculosis. The Journal of Immunology. 171: 3128-3135 (2003) https://doi.org/10.4049/jimmunol.171.6.3128
  20. Gordon S, Pluddemann A. Tissue macrophages: Heterogeneity and functions. BMC Biology. 15: 1-18 (2017) https://doi.org/10.1186/s12915-016-0343-5
  21. Gozzelino R, Jeney V, Soares MP. Mechanisms of cell protection by heme Oxygenase-1. Annual Review of Pharmacology and Toxicology. 50: 323-354 (2010) https://doi.org/10.1146/annurev.pharmtox.010909.105600
  22. Green SJ, Scheller LF, Marletta MA, Seguin MC, Klotz FW, Slayter M, Nelson BJ, Nacy CA. Nitric oxide: Cytokine-regulation of nitric oxide in host resistance to intracellular pathogens. Immunology Letters. 43: 87-94 (1994) https://doi.org/10.1016/0165-2478(94)00158-8
  23. Ham M, Lee J-W, Choi AH, Jang H, Choi G, Park J, Kozuka C, Sears DD, Masuzaki H, Kim JB. Macrophage glucose-6- phosphate dehydrogenase stimulates proinflammatory responses with oxidative stress. Molecular and Cellular Biology. 33: 2425-2435 (2013) https://doi.org/10.1128/MCB.01260-12
  24. Haschemi A, Kosma P, Gille L, Evans CR, Burant CF, Starkl P, Knapp B, Haas R, Schmid JA, Jandl C, Amir S, Lubec G, Park J, Esterbauer H, Bilban M, Brizuela L, Pospisilik JA, Otterbein LE, Wagner O. The sedoheptulose kinase CARKL directs macrophage polarization through control of glucose metabolism. Cell Metabolism. 15: 813-826 (2012) https://doi.org/10.1016/j.cmet.2012.04.023
  25. Herb M, Schramm M. Functions of ros in macrophages and antimicrobial immunity. Antioxidants. 10: 1-39 (2021)
  26. Hirayama D, Iida T, Nakase H. The phagocytic function of macrophage-enforcing innate immunity and tissue homeostasis. International Journal of Molecular Sciences. 19: (2018)
  27. Hong C, Walczak R, Dhamko H, Bradley MN, Marathe C, Boyadjian R, Salazar J V., Tontonoz P. Constitutive activation of LXR in macrophages regulates metabolic and inflammatory gene expression: Identification of ARL7 as a direct target. Journal of Lipid Research. 52: 531-539 (2011) https://doi.org/10.1194/jlr.M010686
  28. Hooftman A, O'Neill LAJ. The immunomodulatory potential of the metabolite itaconate. Trends in Immunology. 40: 687-698 (2019) https://doi.org/10.1016/j.it.2019.05.007
  29. House IG, Savas P, Lai J, Chen AXY, Oliver AJ, Teo ZL, Todd KL, Henderson MA, Giuffrida L, Petley E V., Sek K, Mardiana S, Gide TN, Quek C, Scolyer RA, Long G V., Wilmott JS, Loi S, Darcy PK, Beavis PA. Macrophage-derived CXCL9 and CXCL10 are required for antitumor immune responses following immune checkpoint blockade. Clinical Cancer Research. 26: 487-504 (2020) https://doi.org/10.1158/1078-0432.CCR-19-1868
  30. Huang SCC, Everts B, Ivanova Y, O'Sullivan D, Nascimento M, Smith AM, Beatty W, Love-Gregory L, Lam WY, O'Neill CM, Yan C, Du H, Abumrad NA, Urban JF, Artyomov MN, Pearce EL, Pearce EJ. Cell-intrinsic lysosomal lipolysis is essential for alternative activation of macrophages. Nature Immunology. 15: 846-855 (2014) https://doi.org/10.1038/ni.2956
  31. Hutchins AP, Diez D, Miranda-Saavedra D. The IL-10/STAT3-mediated anti-inflammatory response: Recent developments and future challenges. Briefings in Functional Genomics. 12: 489-498 (2013) https://doi.org/10.1093/bfgp/elt028
  32. Hu X, Wang H, Han C, Cao X. Src promotes anti-inflammatory (M2) macrophage generation via the IL-4/STAT6 pathway. Cytokine. 111: 209-215 (2018) https://doi.org/10.1016/j.cyto.2018.08.030
  33. Im SS, Yousef L, Blaschitz C, Liu JZ, Edwards RA, Young SG, Raffatellu M, Osborne TF. Linking lipid metabolism to the innate immune response in macrophages through sterol regulatory element binding protein-1a. Cell Metabolism. 13: 540-549 (2011) https://doi.org/10.1016/j.cmet.2011.04.001
  34. Isidro RA, Appleyard CB. Colonic macrophage polarization in homeostasis, inflammation, and cancer. American Journal of Physiology - Gastrointestinal and Liver Physiology. 311: G59-G73 (2016) https://doi.org/10.1152/ajpgi.00123.2016
  35. Jiang H, Shi H, Sun M, Wang Y, Meng Q, Guo P, Cao Y, Chen J, Gao X, Li E, Liu J. PFKFB3-driven macrophage glycolytic metabolism is a crucial component of innate antiviral defense. The Journal of Immunology. 197: 2880-2890 (2016) https://doi.org/10.4049/jimmunol.1600474
  36. Jiang S, Yan W. Succinate in the cancer-immune cycle. Cancer Letters. 390: 45-47 (2017) https://doi.org/10.1016/j.canlet.2017.01.019
  37. Johnson AR, Qin Y, Cozzo AJ, Freemerman AJ, Huang MJ, Zhao L, Sampey BP, Milner JJ, Beck MA, Damania B, Rashid N, Galanko JA, Lee DP, Edin ML, Zeldin DC, Fueger PT, Dietz B, Stahl A, Wu Y, Mohlke KL, Makowski L. Metabolic reprogramming through fatty acid transport protein 1 (FATP1) regulates macrophage inflammatory potential and adipose inflammation. Molecular Metabolism. 5: 506-526 (2016) https://doi.org/10.1016/j.molmet.2016.04.005
  38. Johnson EE, Sandgren A, Cherayil BJ, Murray M, Wessling-Resnick M. Role of ferroportin in macrophage-mediated immunity. Infection and Immunity. 78: 5099-5106 (2010) https://doi.org/10.1128/IAI.00498-10
  39. Kim H, Ban I, Choi Y, Yu S, Youn SJ, Baik M-Y, Lee H, Kim W. Puffing of turmeric (Curcuma longa L.) enhances its anti-inflammatory effects by upregulating macrophage oxidative phosphorylation. 29: 931 (2020)
  40. EL Kasmi KC, Stenmark KR. Contribution of metabolic reprogramming to macrophage plasticity and function. Seminars in Immunology. 27: 267-275 (2015) https://doi.org/10.1016/j.smim.2015.09.001
  41. Kelly B, O'Neill LAJ. Metabolic reprogramming in macrophages and dendritic cells in innate immunity. Cell Research. 25: 771-784 (2015) https://doi.org/10.1038/cr.2015.68
  42. Lee JW, Choi AH, Ham M, Kim JW, Choe SS, Park J, Lee GY, Yoon KH, Kim JB. G6PD up-regulation promotes pancreatic β-cell dysfunction. Endocrinology. 152: 793-803 (2011) https://doi.org/10.1210/en.2010-0606
  43. Lee SJ, S Yu, HJ Park, J Jung, G Go, and W Kim. Rice bran oil ameliorates inflammatory responses by enhancing mitochondrial respiration in murine macrophages. PLoS ONE. 14: e0222857 (2019) https://doi.org/10.1371/journal.pone.0222857
  44. Lee TS, Chau LY. Heme oxygenase-1 mediates the anti-inflammatory effect of interleukin-10 in mice. Nature Medicine. 8: 240-246 (2002) https://doi.org/10.1038/nm0302-240
  45. Love DT, Barrett TJ, White MY, Cordwell SJ, Davies MJ, Hawkins CL. Cellular targets of the myeloperoxidase-derived oxidant hypothiocyanous acid (HOSCN) and its role in the inhibition of glycolysis in macrophages. Free Radical Biology and Medicine. 94: 88-98 (2016) https://doi.org/10.1016/j.freeradbiomed.2016.02.016
  46. Malandrino MI, Fucho R, Weber M, Calderon-Dominguez M, Mir JF, Valcarcel L, Escot X, Gomez-Serrano M, Peral B, Salvad L, Fernandez-Veledo S, Casals N, Vazquez-Carrera M, Villarroya F, Vendrell JJ, Serra D, Herrero L. Enhanced fatty acid oxidation in adipocytes and macrophages reduces lipid-induced triglyceride accumulation and inflammation. American Journal of Physiology - Endocrinology and Metabolism. 308: E756-E769 (2015) https://doi.org/10.1152/ajpendo.00362.2014
  47. Mantovani A, Sica A, Sozzani S, Allavena P, Vecchi A, Locati M. The chemokine system in diverse forms of macrophage activation and polarization. Trends in Immunology. 25: 677-686 (2004) https://doi.org/10.1016/j.it.2004.09.015
  48. Mantovani A, Sica A, Locati M. Macrophage polarization comes of age. Immunity. 23: 344-346 (2005) https://doi.org/10.1016/j.immuni.2005.10.001
  49. Mehla K, Singh PK. Metabolic regulation of macrophage polarization in cancer. Trends in Cancer. 5: 822-834 (2019) https://doi.org/10.1016/j.trecan.2019.10.007
  50. Mills CD, Kincaid K, Alt JM, Heilman MJ, Hill AM. M-1/M-2 Macrophages and the Th1/Th2 paradigm. The Journal of Immunology. 164: 6166-6173 (2000) https://doi.org/10.4049/jimmunol.164.12.6166
  51. Mills EL, Kelly B, O'Neill LAJ. Mitochondria are the powerhouses of immunity. Nature Immunology. 18: 488-498 (2017) https://doi.org/10.1038/ni.3704
  52. Mori M, Gotoh T, Nagasaki A, Takiguchi M, Miyanaka K. Arginine metabolism and nitric oxide production. Pathophysiology. 5: 60 (1998)
  53. Mou C, Liu B, Wang M, Jiang M, Han T. PGC-1-related coactivator (PRC) is an important regulator of microglia M2 Polarization. Journal of Molecular Neuroscience. 55: 69-75 (2015) https://doi.org/10.1007/s12031-014-0315-6
  54. Murray PJ. Macrophage polarization. Annual Review of Physiology. 79: 541-566 (2017) https://doi.org/10.1146/annurev-physiol-022516-034339
  55. Murray PJ, Wynn TA. Obstacles and opportunities for understanding macrophage polarization. Journal of Leukocyte Biology. 89: 557-563 (2011) https://doi.org/10.1189/jlb.0710409
  56. Nemeth B, Doczi J, Csete D, Kacso G, Ravasz D, Adams D, Kiss G, Nagy AM, Horvath G, Tretter L, Mocsai A, Csepanyi-Komi R, Iordanov I, Adam-Vizi V, Chinopoulos C. Abolition of mitochondrial substrate-level phosphorylation by itaconic acid produced by LPS-induced Irg1 expression in cells of murine macrophage lineage. FASEB Journal. 30: 286-300 (2016) https://doi.org/10.1096/fj.15-279398
  57. Nomura M, Liu J, Rovira II, Gonzalez-Hurtado E, Lee J, Wolfgang MJ, Finkel T. Fatty acid oxidation in macrophage polarization. Nature Immunology. 17: 216-217 (2016) https://doi.org/10.1038/ni.3366
  58. Nomura M, Liu J, Yu ZX, Yamazaki T, Yan Y, Kawagishi H, Rovira II, Liu C, Wolfgang MJ, Mukouyama Y suke, Finkel T. Macrophage fatty acid oxidation inhibits atherosclerosis progression. Journal of Molecular and Cellular Cardiology. 127: 270-276 (2019) https://doi.org/10.1016/j.yjmcc.2019.01.003
  59. Oishi Y, Spann NJ, Link VM, Muse ED, Strid T, Edillor C, Kolar MJ, Matsuzaka T, Hayakawa S, Tao J, Kaikkonen MU, Carlin AF, Lam MT, Manabe I, Shimano H, Saghatelian A, Glass CK. SREBP1 contributes to resolution of pro-inflammatory TLR4 signaling by reprogramming fatty acid metabolism. Cell Metabolism. 25: 412-427 (2017) https://doi.org/10.1016/j.cmet.2016.11.009
  60. O'Neill LAJ. A broken Krebs cycle in macrophages. Immunity. 42: 393-394 (2015) https://doi.org/10.1016/j.immuni.2015.02.017
  61. Osugi Y, Hara J, Tagawa S, Takai K, Hosoi G, Matsuda Y, Ohta H, Fujisaki H, Kobayashi M, Sakata N, Kawa-Ha K, Okada S, Tawa A. Cytokine production regulating Th1 and Th2 cytokines in hemophagocytic lymphohistiocytosis. Blood. 89: 4100-4103 (1997) https://doi.org/10.1182/blood.V89.11.4100
  62. Parsanathan R, Jain SK. G6PD deficiency shifts polarization of monocytes/macrophages towards a proinflammatory and profibrotic phenotype. Cellular and Molecular Immunology. 18: 770-772 (2021) https://doi.org/10.1038/s41423-020-0428-5
  63. Peyssonnaux C, Nizet V, Johnson RS. Role of the hypoxia inducible factors in iron metabolism. Cell Cycle. 7: 28-32 (2008) https://doi.org/10.4161/cc.7.1.5145
  64. Roszer T. Understanding the mysterious M2 macrophage through activation markers and effector mechanisms. Mediators of Inflammation. 816410: 16-18 (2015)
  65. Saha S, Shalova IN, Biswas SK. Metabolic regulation of macrophage phenotype and function. Immunological Reviews. 280: 102-111 (2017) https://doi.org/10.1111/imr.12603
  66. Salim T, Sershen CL, May EE. Investigating the role of TNF-α and IFN-γ activation on the dynamics of iNOS gene expression in lps stimulated macrophages. PLoS ONE. 11: (2016)
  67. Schweitzer A, Nicola AHS. Studies using antigen-presenting cells lacking expression of both B7-1 (CD80) and B7-2 (CD86) show distinct requirements for B7 molecules during priming versus restimulation of Th2 but not Th1 cytokine production restimulation of Th2 but not Th1 cytokine . The Journal of Immunology. 161: 2762-2771 (1998) https://doi.org/10.4049/jimmunol.161.6.2762
  68. Shapouri-Moghaddam A, Mohammadian S, Vazini H, Taghadosi M, Esmaeili SA, Mardani F, Seifi B, Mohammadi A, Afshari JT, Sahebkar A. Macrophage plasticity, polarization, and function in health and disease. Journal of Cellular Physiology. 233: 6425-6440 (2018)
  69. Shrihari TG. Dual role of inflammatory mediators in cancer. Ecancermedicalscience. 11: 1-9 (2017) https://doi.org/10.3332/ecancer.2017.721
  70. Sica A, Mantovani A. Macrophage plasticity and polarization: In vivo veritas. Journal of Clinical Investigation. 122: 787-795 (2012) https://doi.org/10.1172/JCI59643
  71. Sophie M, John RM, Cristina Garreau Marie-Josee F, Francis R,Prabhat A, Randal JK, Jerry P, Rachid M. Uncoupling stress granule assembly and translation nitiation inhibition. Molecular Biology of The Cells. 20: 2673-2683 (2009) https://doi.org/10.1091/mbc.e08-10-1061
  72. Soto-Heredero G, Gomez de las Heras MM, Gaband-Rodriguez E, Oller J, Mittelbrunn M. Glycolysis - a key player in the inflammatory response. FEBS Journal. 287: 3350-3369 (2020) https://doi.org/10.1111/febs.15327
  73. Spann NJ, Glass CK. Sterols and oxysterols in immune cell function. Nature Immunology. 14: 893-900 (2013) https://doi.org/10.1038/ni.2681
  74. Takeda K, Akira S. Toll receptors and pathogen resistance. Cellular Microbiology. 5: 143-153 (2003) https://doi.org/10.1046/j.1462-5822.2003.00264.x
  75. Tannahill GM, Curtis AM, Adamik J, Palsson-Mcdermott EM, McGettrick AF, Goel G, Frezza C, Bernard NJ, Kelly B, Foley NH, Zheng L, Gardet A, Tong Z, Jany SS, Corr SC, Haneklaus M, Caffrey BE, Pierce K, Walmsley S, Beasley FC, Cummins E, Nizet V, Whyte M, Taylor CT, Lin H, Masters SL, Gottlieb E, Kelly VP, Clish C, Auron PE, Xavier RJ, O'Neill LAJ. Succinate is an inflammatory signal that induces IL-1β through HIF-1α. Nature. 496: 238-242 (2013) https://doi.org/10.1038/nature11986
  76. Tiemessen MM, Jagger AL, Evans HG, Van Herwijnen MJC, John S, Taams LS. CD4+CD25+Foxp3+ regulatory T cells induce alternative activation of human monocytes/macrophages. Proceedings of The National Academy of Sciences USA. 104: 19446-19451 (2007) https://doi.org/10.1073/pnas.0706832104
  77. Torre D, Tambini R, Aristodemo S, Gavazzeni G, Goglio A, Cantamessa C, Pugliese A, Biondi G. Anti-inflammatory response of IL-4, IL-10 and TGF-β in patients with systemic inflammatory response syndrome. Mediators of Inflammation. 9: 193-195 (2000) https://doi.org/10.1080/09629350020002912
  78. Viola A, Munari F, Sanchez-Rodriguez R, Scolaro T, Castegna A. The metabolic signature of macrophage responses. Frontiers in Immunology. 10: 1-16 (2019) https://doi.org/10.3389/fimmu.2019.00001
  79. Wang L, Harrington L, Trebicka E, Hai NS, Kagan JC, Hong CC, Lin HY, Babitt JL, Cherayil BJ. Selective modulation of TLR4-activated inflammatory responses by altered iron homeostasis in mice. Journal of Clinical Investigation. 119: 3322-3328 (2009)
  80. Wang Y, Zeigler MM, Lam GK, Hunter MC, Eubank TD, Khramtsov V V., Tridandapani S, Sen CK, Marsh CB. The role of the NADPH oxidase complex, p38 MARK, and Akt in regulating human monocyte/macrophage survival. American Journal of Respiratory Cell and Molecular Biology. 36: 68-77 (2007) https://doi.org/10.1165/rcmb.2006-0165OC
  81. Wang Y, Li N, Zhang X, Horng T. Mitochondrial metabolism regulates macrophage biology. Journal of Biological Chemistry. 297: 1-11 (2021)
  82. Ward RJ, Wilmet S, Legssyer R, Crichton RR. The influence of iron homoeostasis on macrophage function. Biochemical Society Transactions. 30: 762-765 (2002) https://doi.org/10.1042/bst0300762
  83. White MJV, Briquez PS, White DAV, Hubbell JA. VEGF-A, PDGF-BB and HB-EGF engineered for promiscuous super affinity to the extracellular matrix improve wound healing in a model of type 1 diabetes. npj Regenerative Medicine. 6: 1-12 (2021) https://doi.org/10.1038/s41536-020-00111-1
  84. Witte MB, Barbul A. Arginine physiology and its implication for wound healing. Wound Repair and Regeneration. 11: 419-423 (2003) https://doi.org/10.1046/j.1524-475X.2003.11605.x
  85. Wu JY, Huang TW, Hsieh YT, Wang YF, Yen CC, Lee GL, Yeh CC, Peng YJ, Kuo YY, Wen HT, Lin HC, Hsiao CW, Wu KK, Kung HJ, Hsu YJ, Kuo CC. Cancer-derived succinate promotes macrophage polarization and cancer metastasis via succinate receptor. Molecular Cell. 77: 213-227.e5 (2020)
  86. Yang D, Yang L, Cai J, Hu X, Li H, Zhang Xiaoqing, Zhang Xiaohan, Chen X, Dong H, Nie H, Li Y. A sweet spot for macrophages: Focusing on polarization. Pharmacological Research. 167: (2021)
  87. Zhang Q, Wang J, Yadav DK, Bai X, Liang T. Glucose metabolism: The metabolic signature of tumor associated macrophage. Frontiers in Immunology. 12: 1-9 (2021)