Acknowledgement
The author's work was supported in part by the Hankuk University of Foreign Studies Research Fund and in part by the National Research Foundation of Korea (2021R1F1A1048111).
References
- R. F. Wagner, S. W. Smith, J. M. Sandrik, and H. Lopez, Statistics of speckle in ultrasound B-scans, IEEE Trans. Sonics and Ultrason., 30 (1983), 156-163. https://doi.org/10.1109/T-SU.1983.31404
- J. M. Schmitt, S. Xiang, and K. M. Yung, Speckle in optical coherence tomography, Journal of biomedical optics, 4 (1999), 95-105. https://doi.org/10.1117/1.429925
- J.-S. Lee, K. W. Hoppel, S. A. Mango, and A. R. Miller, Intensity and phase statistics of multilook polarimetric and interferometric SAR imagery, IEEE Trans. Geosci. Remote Sens., 32 (1994), 1017-1028. https://doi.org/10.1109/36.312890
- J.-S. Lee, Digital image enhancement and noise filtering by use of local statistics, IEEE Trans. Pattern Anal. Mach. Intell., 2 (1980), 165-168. https://doi.org/10.1109/TPAMI.1980.4766994
- V. S. Frost, J. A. Stiles, K. S. Shanmugan, and J. C. Holtzman, A model for radar images and its application to adaptive digital filtering of multiplicative noise, IEEE Trans. Pattern Anal. Mach. Intell., PAMI-4 (1982), 157-166. https://doi.org/10.1109/TPAMI.1982.4767223
- Y. Yu and S. T. Acton, Speckle reducing anisotropic diffusion, IEEE Trans. Image Process., 11 (2002), 1260- 1270. https://doi.org/10.1109/TIP.2002.804276
- K. Krissian, C.-F. Westin, R. Kikinis, and K. G. Vosburgh, Oriented speckle reducing anisotropic diffusion, IEEE Trans. Image Process., 16 (2007), 1412-1424. https://doi.org/10.1109/TIP.2007.891803
- G. Aubert and J.-F. Aujol. A variational approach to removing multiplicative noise, SIAM J. Appl. Math., 68 (2008), 925-946. https://doi.org/10.1137/060671814
- Z. Li, Y. Lou, and T. Zeng, Variational multiplicative noise removal by DC programming, J. Sci. Comput., 68 (2016), 1200-1216. https://doi.org/10.1007/s10915-016-0175-z
- J. Shi and S. Osher, A nonlinear inverse scale space method for a convex multiplicative noise model, SIAM J. Imaging Sci., 1 (2008), 294-321. https://doi.org/10.1137/070689954
- G. Steidl and T. Teuber, Removing multiplicative noise by Douglas-Rachford splitting methods, J. Math. Imag- ing Vis., 36 (2010), 168-184. https://doi.org/10.1007/s10851-009-0179-5
- Y. Dong and T. Zeng, A convex variational model for restoring blurred images with multiplicative noise, SIAM J. Imaging Sci., 6 (2013), 1598-1625. https://doi.org/10.1137/120870621
- J. Lu, L. Shen, C. Xu, and Y. Xu, Multiplicative noise removal in imaging: An exp-model and its fixed-point proximity algorithm, Appl. Comput. Harmon. Anal., 41 (2016), 518-539. https://doi.org/10.1016/j.acha.2015.10.003
- S. Yun and H. Woo, A new multiplicative denoising variational model based on m-th root transformation, IEEE Trans. Image Process., 21 (2012), 2523-2533. https://doi.org/10.1109/TIP.2012.2185942
- M. Kang, S. Yun, and H. Woo, Two-level convex relaxed variational model for multiplicative denoising, SIAM J. Imaging Sci., 6 (2013), 875-903. https://doi.org/10.1137/11086077X
- H. Na, M. Kang, M. Jung, and M. Kang, An exp model with spatially adaptive regularization parameters for multiplicative noise removal, J. Sci. Comput., 75 (2018), 478-509. https://doi.org/10.1007/s10915-017-0550-4
- H. Na, M. Kang, M. Jung, and M. Kang, Nonconvex TGV regularization model for multiplicative noise removal with spatially varying parameters, Inverse Probl. Imaging, 13 (2019), 117-147. https://doi.org/10.3934/ipi.2019007
- S. Parrilli, M. Poderico, C. V. Angelino, and L. Verdoliva, A nonlocal SAR image denoising algorithm based on LLMMSE wavelet shrinkage, IEEE Trans. Geosci. Remote Sens., 50 (2012), 606-616. https://doi.org/10.1109/TGRS.2011.2161586
- L. I. Rudin, S. Osher, and E. Fatemi, Nonlinear total variation based noise removal algorithms, Physica D: Nonlinear Phenomena, 60 (1992), 259-268. https://doi.org/10.1016/0167-2789(92)90242-F
- L. Rudin, P.-L. Lions, and S. Osher, Multiplicative denoising and deblurring: theory and algorithms, Geometric Level Set Methods in Imaging, Vision, and Graphics, Springer, New York, 2003.
- M. Hintermuller and A. Langer, Subspace correction methods for a class of nonsmooth and nonadditive convex variational problems with mixed L1-L2 data-fidelity in image processing, SIAM J. Imaging Sci., 6 (2013), 2134-2173. https://doi.org/10.1137/120894130
- A. Langer, Automated parameter selection in the L1-L2-TV model for removing gaussian plus impulse noise, Inverse Problems, 33 (2017), 074002. https://doi.org/10.1088/0266-5611/33/7/074002
- J. C. D. los Reyes and C.-B. Schonlieb, Image denoising: learning the noise model via nonsmooth PDE- constrained optimization, Inverse Problems and Imaging, 7 (2013), 1183-1214. https://doi.org/10.3934/ipi.2013.7.1183
- A. Jezierska, E. Chouzenoux, J.-C. Pesquet, and H. Talbot, A convex approach for image restoration with exact Poisson-Gaussian likelihood, SIAM J. Imaging Sci., 62 (2015), 17-30.
- L. Calatroni, C. Chung, J. D. L. Reyes, C.-B. Schonlieb, and T. Valkonen, Bilevel approaches for learning of variational imaging models, Variational Methods: In Imaging and Geometric Control, Radon Series on Computational and Applied Mathematics, De Gruyter, 2017.
- L. Calatroni, J. C. D. L. Reyes, and C.-B. Schonlieb, Infimal convolution of data discrepancies for mixed noise removal, SIAM J. Imaging Sci., 10 (2017), 1196-1233. https://doi.org/10.1137/16M1101684
- G. Sapiro, Vector-valued active contours, IEEE, Proceedings of CVPR, San Francisco, CA, USA 1996.
- P. Blomgren and T. F. Chan, Color tv: Total variation methods for restoration of vector valued images, IEEE Trans. Image Process., 7 (1998), 304-309. https://doi.org/10.1109/83.661180
- R. Kimmel, R. Malladi, and N. Sochen, Images as embedded maps and minimal surfaces: Movies, color, texture, and volumetric medical images, Int. J. Comput. Vis., 39 (2000), 111-129. https://doi.org/10.1023/A:1008171026419
- T. Chan, S. Kang, and J. Shen, Total variation denoising and enhancement of color images based on the CB and HSV color models, J. Vis. Commun. Image Represent., 12 (2001), 422-435. https://doi.org/10.1006/jvci.2001.0491
- H. Attouch, G. Buttazzo, and G. Michaille, Variational analysis in Sobolev and BV spaces: Applications to PDEs and optimization, MPS-SIAM Ser. Optim., SIAM, Philadelphia, 2006.
- X. Bresson and T. F. Chan, Fast dual minimization of the vectorial total variation norm and applications to color image processing, Inverse Probl. Imaging, 2 (2008), 255-284.
- Y. Wen, M. Ng, and Y. Huang, Efficient total variation minimization methods for color image restoration, IEEE Trans. Image Process., 17 (2008), 2081-2088. https://doi.org/10.1109/TIP.2008.2003406
- P. Rodriguez and B. Wohlberg, A generalized vector-valued total variation algorithm, IEEE, Proceedings of ICIP, Cairo, Egypt 2009.
- C. Wu and X.-C. Tai, Augmented lagrangian method, dual methods, and split bregman iteration for ROF, vectorial TV, and high order models, SIAM J. Imaging Sci., 3 (2010), 300-339. https://doi.org/10.1137/090767558
- S. Lefkimmiatis, A. Roussos, M. Unser, and P. Maragos, Convex generalizations of total variation based on the structure tensor with applications to inverse problems, Lecture Notes in Computer Science 7893, Springer Berlin, Heidelberg, Proceedings of SSVM, Graz, Austria, 2013.
- S. Ono and I. Yamada, Decorrelated vectorial total variation, IEEE, Proceedings of CVPR, Columbus, OH, USA 2014.
- R. Bergmann, R. H. Chan, R. Hielscher, J. Persch, and G. Steidl, Restoration of manifold-valued images by half-quadratic minimization, Inverse Probl. Imaging, 10 (2016), 281-304. https://doi.org/10.3934/ipi.2016001
- J. Duran, M. Moeller, C. Sbert, and D. Cremers, Collaborative total variation: A general framework for vectorial TV models, SIAM J. Imaging Sci., 9 (2016), 116-151. https://doi.org/10.1137/15M102873X
- Z. Jia, M. K. Ng, and W. Wang, Color image restoration by saturation-value total variation, SIAM J. Imaging Sci., 12 (2019), 972-1000. https://doi.org/10.1137/18m1230451
- W. Wang, M. Yao, and M. K. Ng, Color image multiplicative noise and blur removal by saturation-value total variation, Appl. Math. Model., 90 (2021), 240-264. https://doi.org/10.1016/j.apm.2020.08.052
- S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, Distributed optimization and statistical learning via the alternating direction method of multipliers, Found. Trends Mach. Learn., 3 (2010), 1-122. https://doi.org/10.1561/2200000016
- P. Denis, P. Carre, and C. Fernandez-Maloigne, Spatial and spectral quaternionic approaches for colour im- ages, Comput. Vis. Image Und., 107 (2007), 74-87. https://doi.org/10.1016/j.cviu.2006.11.019
- I. Csiszar and G. Tusna, Information geometry and alternating minimization procedures, Statistics and Deci- sions, 1 (1984), 205-237.
- A. Chambolle, An algorithm for total variation minimization and applications, J. Math. Imaging Vis., 20 (2004), 89-97. https://doi.org/10.1023/b:jmiv.0000011321.19549.88
- A. Chambolle and T. Pock, A first-order primal-dual algorithm for convex problems with applications to imaging, J. Math. Imaging Vis., 40 (2011), 120-145. https://doi.org/10.1007/s10851-010-0251-1
- T. Goldstein and S. Osher, The split bregman method for L1-regularized problems, SIAM J. Imaging Sci., 2 (2009), 323-343. https://doi.org/10.1137/080725891
- C. Chen, M. Ng, and X.-L. Zhao, Alternating direction method of multipliers for nonlinear image restoration problems, IEEE Trans. Image Process., 24 (2015), 33-43. https://doi.org/10.1109/TIP.2014.2369953
- Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, Image quality assessment: from error visibility to structural similarity, IEEE Trans. Image Process., 13 (2004), 600-612. https://doi.org/10.1109/TIP.2003.819861
- K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian, Image denoising by sparse 3-d transform-domain collab- orative filtering, IEEE Trans. Image Process., 16 (2007), 2080-2095. https://doi.org/10.1109/TIP.2007.901238
- Y. Dong, M. Hintermuller, and M. M. Rincon-Camacho, Automated regularization parameter selection in multi-scale total variation models for image restoration, J. Math. Imaging Vis., 40 (2011), 82-104. https://doi.org/10.1007/s10851-010-0248-9