• Title/Summary/Keyword: Color image denoising

Search Result 11, Processing Time 0.024 seconds

Wiener Filter Based Denoising Algorithm for Demosaicking (디모자이킹을 위한 Wiener Filter 기반의 디노이징 알고리듬)

  • Lee, Rok-Kyu;Jeong, Je-Chang
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.5C
    • /
    • pp.286-294
    • /
    • 2011
  • In most digital cameras, images are obtained by a sensor overlaid by the color filter array (CFA) such as Bayer, demanding a demosaicking procedure to rebuild the full resolution color images. However, due to the nature of sensor, it is necessary to consider denoising step to remove the noise. In this paper, we analyze demosaicking and denoising jointly and show that the proposed method can solve the denoising issue by simple manner, well suppress different level of noises. The proposed algorithm yields comparable performances measured by several image quality assessment (CPSNR, SCIELAB, and FSIM), while the computational cost is low.

Automatic Denoising in 2D Color Face Images Using Recursive PCA Reconstruction (2D 칼라 얼굴 영상에서 반복적인 PCA 재구성을 이용한 자동적인 잡음 제거)

  • Park, Hyun;Moon, Young-Shik
    • Proceedings of the IEEK Conference
    • /
    • 2005.11a
    • /
    • pp.1157-1160
    • /
    • 2005
  • The denoising and reconstruction of color images are increasingly studied in the field of computer vision and image processing. Especially, the denoising and reconstruction of color face images are more difficult than those of natural images because of the structural characteristics of human faces as well as the subtleties of color interactions. In this paper, we propose a denoising method based on PCA reconstruction for removing complex color noises on human faces, which is not easy to remove by using vectorial color filters. The proposed method is composed of the following five steps; training of canonical eigenface space using PCA, automatic extracting of face features using active appearance model, relighing of reconstructed color image using bilateral filter, extraction of noise regions using the variance of training data, and reconstruction using partial information of input images (except the noise regions) and blending of the reconstructed image with the original image. Experimental results show that the proposed denosing method efficiently removes complex color noises on input face images.

  • PDF

Automatic Denoising of 2D Color Face Images Using Recursive PCA Reconstruction (2차원 칼라 얼굴 영상에서 반복적인 PCA 재구성을 이용한 자동적인 잡음 제거)

  • Park Hyun;Moon Young-Shik
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.43 no.2 s.308
    • /
    • pp.63-71
    • /
    • 2006
  • Denoising and reconstruction of color images are extensively studied in the field of computer vision and image processing. Especially, denoising and reconstruction of color face images are more difficult than those of natural images because of the structural characteristics of human faces as well as the subtleties of color interactions. In this paper, we propose a denoising method based on PCA reconstruction for removing complex color noise on human faces, which is not easy to remove by using vectorial color filters. The proposed method is composed of the following five steps: training of canonical eigenface space using PCA, automatic extraction of facial features using active appearance model, relishing of reconstructed color image using bilateral filter, extraction of noise regions using the variance of training data, and reconstruction using partial information of input images (except the noise regions) and blending of the reconstructed image with the original image. Experimental results show that the proposed denoising method maintains the structural characteristics of input faces, while efficiently removing complex color noise.

Denoising Diffusion Null-space Model and Colorization based Image Compression

  • Indra Imanuel;Dae-Ki Kang;Suk-Ho Lee
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.16 no.2
    • /
    • pp.22-30
    • /
    • 2024
  • Image compression-decompression methods have become increasingly crucial in modern times, facilitating the transfer of high-quality images while minimizing file size and internet traffic. Historically, early image compression relied on rudimentary codecs, aiming to compress and decompress data with minimal loss of image quality. Recently, a novel compression framework leveraging colorization techniques has emerged. These methods, originally developed for infusing grayscale images with color, have found application in image compression, leading to colorization-based coding. Within this framework, the encoder plays a crucial role in automatically extracting representative pixels-referred to as color seeds-and transmitting them to the decoder. The decoder, utilizing colorization methods, reconstructs color information for the remaining pixels based on the transmitted data. In this paper, we propose a novel approach to image compression, wherein we decompose the compression task into grayscale image compression and colorization tasks. Unlike conventional colorization-based coding, our method focuses on the colorization process rather than the extraction of color seeds. Moreover, we employ the Denoising Diffusion Null-Space Model (DDNM) for colorization, ensuring high-quality color restoration and contributing to superior compression rates. Experimental results demonstrate that our method achieves higher-quality decompressed images compared to standard JPEG and JPEG2000 compression schemes, particularly in high compression rate scenarios.

SATURATION-VALUE TOTAL VARIATION BASED COLOR IMAGE DENOISING UNDER MIXED MULTIPLICATIVE AND GAUSSIAN NOISE

  • JUNG, MIYOUN
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.26 no.3
    • /
    • pp.156-184
    • /
    • 2022
  • In this article, we propose a novel variational model for restoring color images corrupted by mixed multiplicative Gamma noise and additive Gaussian noise. The model involves a data-fidelity term that characterizes the mixed noise as an infimal convolution of two noise distributions and the saturation-value total variation (SVTV) regularization. The data-fidelity term facilitates suitable separation of the multiplicative Gamma and Gaussian noise components, promoting simultaneous elimination of the mixed noise. Furthermore, the SVTV regularization enables adequate denoising of homogeneous regions, while maintaining edges and details and diminishing the color artifacts induced by noise. To solve the proposed nonconvex model, we exploit an alternating minimization approach, and then the alternating direction method of multipliers is adopted for solving subproblems. This contributes to an efficient iterative algorithm. The experimental results demonstrate the superior performance of the proposed model compared to other existing or related models, with regard to visual inspection and image quality measurements.

Real-Time Digital Image Stabilization for Cell Phone Cameras in Low-Light Environments without Frame Memory

  • Luo, Lin-Bo;Chong, Jong-Wha
    • ETRI Journal
    • /
    • v.34 no.1
    • /
    • pp.138-141
    • /
    • 2012
  • This letter proposes a real-time digital image stabilization system for cell phone cameras without the need for frame memory. The system post-processes an image captured with a safe shutter speed using an adaptive denoising filter and a global color correction algorithm. This system can transfer the normal brightness of an image previewed under long exposure to the captured image making it bright and crisp with low noise. It is even possible to take photos in low-light conditions. By not needing frame memory, the approach is feasible for integration into the size-constrained image sensors of cell phone cameras.

A Coherent Algorithm for Noise Revocation of Multispectral Images by Fast HD-NLM and its Method Noise Abatement

  • Hegde, Vijayalaxmi;Jagadale, Basavaraj N.;Naragund, Mukund N.
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.12spc
    • /
    • pp.556-564
    • /
    • 2021
  • Numerous spatial and transform-domain-based conventional denoising algorithms struggle to keep critical and minute structural features of the image, especially at high noise levels. Although neural network approaches are effective, they are not always reliable since they demand a large quantity of training data, are computationally complicated, and take a long time to construct the model. A new framework of enhanced hybrid filtering is developed for denoising color images tainted by additive white Gaussian Noise with the goal of reducing algorithmic complexity and improving performance. In the first stage of the proposed approach, the noisy image is refined using a high-dimensional non-local means filter based on Principal Component Analysis, followed by the extraction of the method noise. The wavelet transform and SURE Shrink techniques are used to further culture this method noise. The final denoised image is created by combining the results of these two steps. Experiments were carried out on a set of standard color images corrupted by Gaussian noise with multiple standard deviations. Comparative analysis of empirical outcome indicates that the proposed method outperforms leading-edge denoising strategies in terms of consistency and performance while maintaining the visual quality. This algorithm ensures homogeneous noise reduction, which is almost independent of noise variations. The power of both the spatial and transform domains is harnessed in this multi realm consolidation technique. Rather than processing individual colors, it works directly on the multispectral image. Uses minimal resources and produces superior quality output in the optimal execution time.

Hair Removal on Face Images using a Deep Neural Network (심층 신경망을 이용한 얼굴 영상에서의 헤어 영역 제거)

  • Lumentut, Jonathan Samuel;Lee, Jungwoo;Park, In Kyu
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2019.06a
    • /
    • pp.163-165
    • /
    • 2019
  • The task of image denoising is gaining popularity in the computer vision research field. Its main objective of restoring the sharp image from given noisy input is demanded in all image processing procedure. In this work, we treat the process of residual hair removal on faces images similar to the task of image denoising. In particular, our method removes the residual hair that presents on the frontal or profile face images and in-paints it with the relevant skin color. To achieve this objective, we employ a deep neural network that able to perform both tasks in one time. Furthermore, simple technic of residual hair color augmentation is introduced to increase the number of training data. This approach is beneficial for improving the robustness of the network. Finally, we show that the experimental results demonstrate the superiority of our network in both quantitative and qualitative performances.

  • PDF

GAN-Based Local Lightness-Aware Enhancement Network for Underexposed Images

  • Chen, Yong;Huang, Meiyong;Liu, Huanlin;Zhang, Jinliang;Shao, Kaixin
    • Journal of Information Processing Systems
    • /
    • v.18 no.4
    • /
    • pp.575-586
    • /
    • 2022
  • Uneven light in real-world causes visual degradation for underexposed regions. For these regions, insufficient consideration during enhancement procedure will result in over-/under-exposure, loss of details and color distortion. Confronting such challenges, an unsupervised low-light image enhancement network is proposed in this paper based on the guidance of the unpaired low-/normal-light images. The key components in our network include super-resolution module (SRM), a GAN-based low-light image enhancement network (LLIEN), and denoising-scaling module (DSM). The SRM improves the resolution of the low-light input images before illumination enhancement. Such design philosophy improves the effectiveness of texture details preservation by operating in high-resolution space. Subsequently, local lightness attention module in LLIEN effectively distinguishes unevenly illuminated areas and puts emphasis on low-light areas, ensuring the spatial consistency of illumination for locally underexposed images. Then, multiple discriminators, i.e., global discriminator, local region discriminator, and color discriminator performs assessment from different perspectives to avoid over-/under-exposure and color distortion, which guides the network to generate images that in line with human aesthetic perception. Finally, the DSM performs noise removal and obtains high-quality enhanced images. Both qualitative and quantitative experiments demonstrate that our approach achieves favorable results, which indicates its superior capacity on illumination and texture details restoration.

Image Dehazing Enhancement Algorithm Based on Mean Guided Filtering

  • Weimin Zhou
    • Journal of Information Processing Systems
    • /
    • v.19 no.4
    • /
    • pp.417-426
    • /
    • 2023
  • To improve the effect of image restoration and solve the image detail loss, an image dehazing enhancement algorithm based on mean guided filtering is proposed. The superpixel calculation method is used to pre-segment the original foggy image to obtain different sub-regions. The Ncut algorithm is used to segment the original image, and it outputs the segmented image until there is no more region merging in the image. By means of the mean-guided filtering method, the minimum value is selected as the value of the current pixel point in the local small block of the dark image, and the dark primary color image is obtained, and its transmittance is calculated to obtain the image edge detection result. According to the prior law of dark channel, a classic image dehazing enhancement model is established, and the model is combined with a median filter with low computational complexity to denoise the image in real time and maintain the jump of the mutation area to achieve image dehazing enhancement. The experimental results show that the image dehazing and enhancement effect of the proposed algorithm has obvious advantages, can retain a large amount of image detail information, and the values of information entropy, peak signal-to-noise ratio, and structural similarity are high. The research innovatively combines a variety of methods to achieve image dehazing and improve the quality effect. Through segmentation, filtering, denoising and other operations, the image quality is effectively improved, which provides an important reference for the improvement of image processing technology.