DOI QR코드

DOI QR Code

In vitro Anti-oxidant and Anti-inflammatory Effects of Moringa Folium and Eucommiae Cortex 2:1 (g/g) Mixed Formula

모링가:두충 2:1 (g:g) 복합 조성물의 in vitro 항산화 및 항염 효능 연구

  • Heo, Seok-Mo (Department of Periodontology, School of Dentistry, Chonbuk National University) ;
  • Yang, Jin-Won (Department of Anatomy and Histology, College of Korean Medicine, Daegu Haany University) ;
  • Kim, Jong-Lae (HLscience Co., Ltd) ;
  • Park, Mi-Ryeong (HLscience Co., Ltd) ;
  • Kim, Tae Gi (HLscience Co., Ltd) ;
  • Ku, Sae-Kwang (Department of Anatomy and Histology, College of Korean Medicine, Daegu Haany University) ;
  • Park, Soo-Jin (Department of Physiology, College of Korean Medicine, Daegu Haany University)
  • 허석모 (전북대학교 치과대학 치주과학) ;
  • 양진원 (대구한의대학교 해부조직학교실) ;
  • 김종래 (에이치엘사이언츠) ;
  • 박미령 (에이치엘사이언츠) ;
  • 김태기 (에이치엘사이언츠) ;
  • 구세광 (대구한의대학교 해부조직학교실) ;
  • 박수진 (대구한의대학교 생리학교실)
  • Received : 2022.05.05
  • Accepted : 2022.08.24
  • Published : 2022.08.25

Abstract

The purpose of study is to evaluate in vitro anti-oxidant and anti-inflammatory effects of Moringa Folium and Eucommiae Cortex 2:1 (g/g) mixtures (MEMix). HaCaT and human normal dermal fibroblast were treated with 0.01-1 mg/mL of MEMix to monitor cytotoxicity. Radical scavenging activities of MEMix were examined by DPPH assay. To explore anti-inflammatory effect, Raw 264.7 cells were pretreated with MEMix for 1h and subsequently exposed to LPS for 18h. NO release and cytotoxicity of Raw 264.7 cells were measured by adding Griess and MTT reagents, respectively. TNF-α, IL-1β, IL-6, and PGE2 productions were examined by ELISA. Immunoblot analysis was conducted to examine COX-2 expression in MEMix pretreated Raw 264.7 cells. Up to 1 mg/mL concentration, treatment of MEMix for 24 h did not affect normal dermal fibroblast viability and significantly reduced cell viability of HaCaT cells with no concentration dependency. MEMix increased DPPH radical scavenging activity with concentration dependency. Radical scavenging activities by 1 mg/mL of MEMix was comparable with 30 µM of trolox. Pretreatment of MEMix did not change the reduction of Raw 264.7 cell viability. Exposure of LPS in Raw 264.7 cells significantly increased NO, TNF-α, IL-1β, IL-6, and PGE2 productions, and MEMix pretreatment attenuated these productions by LPS concentration dependently. However, pretreatment with MEMix did not change COX-2 expression by LPS in Raw 264.7 cells. MEMix showed in vitro anti-oxidant and anti-inflammatory activities. MEMix would be useful candidate agent against inflammation.

Keywords

References

  1. Habashy RR, Abdel-Naim AB, Khalifa AE, Al-Azizi MM. Anti-inflammatory effects of jojoba liquid wax in experimental models. Pharmacol Res 2005;51(2):95-105. https://doi.org/10.1016/j.phrs.2004.04.011
  2. Williams RC. Periodontal disease. N Engl J Med 1990;322(6):373-82. https://doi.org/10.1056/NEJM199002083220606
  3. Williams RC, Paquette DW. Understanding the pathogenesis of periodontitis: a century of discovery. J Int Acad Periodontol 2000;2(3):59-63.
  4. Sallay K, Sanavi F, Ring I, Pham P, Behling UH, Nowotny A. Alveolar bone destruction in the immunosuppressed rat. J Periodontal Res 1982;17(3):263-74. https://doi.org/10.1111/j.1600-0765.1982.tb01153.x
  5. Samejima Y, Ebisu S, Okada H. Effect of infection with Eikenella corrodens on the progression of ligature-induced periodontitis in rats. J Periodontal Res 1990;25(5):308-15. https://doi.org/10.1111/j.1600-0765.1990.tb00920.x
  6. Botelho MA, Rao VS, Carvalho CB, Bezerra-Filho JG, Fonseca SG, Vale ML, Montenegro D, Cunha F, Ribeiro RA, Brito, GA. Lippia sidoides and Myracrodruon urundeuva gel prevents alveolar bone resorption in experimental periodontitis in rats. J Ethnopharmacol 2007;113(3):471-8. https://doi.org/10.1016/j.jep.2007.07.010
  7. Reddy MS, Geurs NC, Gunsolley JC. Periodontal host modulation with antiproteinase, anti-inflammatory, and bone-sparing agents: a systematic review. Ann Periodontol 2003;8(1):12-37. https://doi.org/10.1902/annals.2003.8.1.12
  8. Bhatavadekar NB, Williams RC. New directions in host modulation for the management of periodontal disease. J Clin Periodontol 2009;36(2):124-6. https://doi.org/10.1111/j.1600-051X.2008.01354.x
  9. Kim S. The current state and effect of the drugs for the treatment of periodontal disease in market. Chonnam National University 2016.
  10. Min DJ, Yi SW, Lee SH, Kim SS, Kim CH, Lee JH, Bae JH, Kim HK. The Anti-inflammatory Effect of Green Tea Extract Against Prevotella intermedia. J Soc Cosmet Scientists Korea. 2011;37(1):67-73.
  11. Lee DJ, Han IM, Kim WJ, Cho IS. Anti-microbial, Anti-inflammatory and Anti-oxidative Effects of Herbal Medicine Extracts as Anti-gingivitis Ingredients. J Dent Hyg Sci 2010;10(1):25-9.
  12. Park YH. Ameliorating Effects of Curcumin on the Ligation-induced Experimental Periodontitis and Alveolar Bone Loss in Rats. Kyungpook National University 2019.
  13. Park, J.H. Anti-Periodontitis Effects of Magnolia obovata Thunberg. Cortex with Zea Mays L. Extract on the Ligature-Induced Periodontitis Rat, Kyung Hee University 2016.
  14. Cheenpracha S, Park EJ, Yoshida WY, Barit C, Wall M, Pezzuto JM, Chang LC. Potential anti-inflammatory phenolic glycosides from the medicinal plant Moringa oleifera fruits. Bioorg Med Chem 2010;18(17):6598-602. https://doi.org/10.1016/j.bmc.2010.03.057
  15. Kim DS. Phytochemical analysis, antioxidant and antiobesity effects of Moringa oleifera leaves extracts. Chosun University 2019.
  16. Choi YJ, Jung, KI. Anti-Diabetic, Alcohol-Metabolizing, and Hepatoprotective Activities of Moringa (Moringa oleifera Lam.) Leaf Extracts. J Korean Soc Food Sci Nutr. 2016;45(6):819-27. https://doi.org/10.3746/jkfn.2016.45.6.819
  17. Ghasi S, Nwobodo E, Ofili JO. Hypocholesterolemic effects of crude extract of leaf of Moringa oleifera Lam in high-fat diet fed wistar rats. J Ethnopharmacol 2000;69(1):21-5. https://doi.org/10.1016/S0378-8741(99)00106-3
  18. Okuda T, Baes AU, Nishijima, W, Okada M. Coagulation mechanism of salt solution-extracted active component in Moringa oleifera seeds. Water Res 2001;35(3):830-4. https://doi.org/10.1016/S0043-1354(00)00296-7
  19. Zheng, J, Yan, Q, Zhang, K, Zheng, Y, Zhao, S. Protective effects of different extracts of Eucommia ulmoides Oliv. against thioacetamide-induced hepatotoxicity in mice. Indian J Exp Biol 2012;50(12):875-82.
  20. Hsieh CL, Yen GC. Antioxidant actions of Du-zhong(Eucommia ulmoides OLIV.) toward oxidative damage in biomolecules. Life Sci 2000;66(15):1387-400. https://doi.org/10.1016/S0024-3205(00)00450-1
  21. Kim BH, Park KS, Chang Il-Moo. Elucidation of anti-inflammatory potencies of Eucommia ulmoides bark and Plantago asiatica seeds. J Med Food. 2009;12(4):764-9. https://doi.org/10.1089/jmf.2008.1239
  22. Kwon SH, Lee HK, Kim JA, Hong SI, Kim SY, Jo TH, Park YI, Lee CK, Kim YB, Lee SY, Jang CG. Neuroprotective effects of Eucommia ulmoides Oliv. bark on amyloid beta(25-35)-induced learning and memory impairments in mice. Neurosci Lett 2011;487(1):123-7. https://doi.org/10.1016/j.neulet.2010.10.042
  23. Lin J, Fan YJ, Mehl C, Zhu JJ, Chen H, Jin LY, Xu JH, Wang HM. Eucommia ulmoides Oliv. antagonizes H2O2-induced rat osteoblastic MC3T3-E1 apoptosis by inhibiting expressions of caspases 3, 6, 7, and 9. J Zhejiang Univ Sci B 2011;12(1):47-54. https://doi.org/10.1631/jzus.B1000057
  24. HLSCIENCE Co., LTD. Method for improving periodontitis and alveolar bone loss of complex extracts of Moringa leaf and Eucommia Bark by anti-bacterial, antioxidant, anti-inflammatory, antioxidant effects and inhibition of alveolar bone loss. 10-2380781-0000 (2022-03-25). DOI: http://doi.org/10.8080/1020170037935
  25. Kim DO, Chun OK, Kim YJ, Moon HY, Lee CY. Quantification of polyphenolics and their antioxidant capacity in fresh plums. J Agric Food Chem 2003;51(22):6509-15. https://doi.org/10.1021/jf0343074
  26. Luis Anel-Lopez, Manuel Alvarez-Rodriguez, Olga Garcia-Alvarez, Mercedes Alvarez, Alejandro Maroto-Morales, Luis Anel, Paulino de Paz, J Julian Garde, Felipe Martinez-Pastor. Reduced glutathione and Trolox (vitamin E) as extender supplements in cryopreservation of red deer epididymal spermatozoa. Anim Reprod Sci 2012;135(1-4):37-46. https://doi.org/10.1016/j.anireprosci.2012.09.001
  27. Barton GM, Medzhitov R. Toll-like receptor signaling pathways. Science 2003;300(5625):1524-5. https://doi.org/10.1126/science.1085536
  28. Aktan F. iNOS-mediated nitric oxide production and its regulation. Life Sci 2004;75(6):639-53. https://doi.org/10.1016/j.lfs.2003.10.042
  29. Guzik TJ, Korbut R, Adamek-Guzik T. Nitric oxide and superoxide in inflammation and immune regulation. J Physiol Pharmacol 2003;54(4):469-87.
  30. Delgado AV, McManus AT, Chambers JP. Production of tumor necrosis factor-alpha, interleukin 1-beta, interleukin 2, and interleukin 6 by rat leukocyte subpopulations after exposure to substance P. Neuropeptides 2003;37(6):355-61. https://doi.org/10.1016/j.npep.2003.09.005
  31. Yoshimura A. Signal transduction of inflammatory cytokines and tumor development. Cancer Sci 2006;97(6):439-47. https://doi.org/10.1111/j.1349-7006.2006.00197.x
  32. Beutler B, Cerami A. The biology of cachectin/TNF-α primary mediator of the host response. Annu Rev Immunol 1989;7:625-55. https://doi.org/10.1146/annurev.iy.07.040189.003205
  33. Botting RM. Cyclooxygenase: Past, present and future. A tribute to John R. Vane (1927-2004). J Therm Biol 2006;31(1-2):208-19. https://doi.org/10.1016/j.jtherbio.2005.11.008
  34. Blobaum A.L., Marnett, L.J. Structural and functional basis of cyclooxygenase inhibition. J Med Chem 2007;50(7):1425-41. https://doi.org/10.1021/jm0613166
  35. Takayanagi H. Inflammatory bone destruction and osteoimmunology. J Periodontal Res 2005;40(4):287-93. https://doi.org/10.1111/j.1600-0765.2005.00814.x
  36. Takahashi S, Fukuda M, Mitani A, Fujimura T, Iwamura Y, Sato S, Kubo T, Sugita Y, Maeda H, Shinomura T, Noguchi, T. Follicular dendritic cell-secreted protein is decreased in experimental periodontitis concurrently with the increase of interleukin-17 expression and the Rankl/Opg mRNA ratio. J Periodontal Res 2014;49(3):390-7. https://doi.org/10.1111/jre.12118
  37. Tyagi AM, Srivastava K, Mansoori MN, Trivedi R, Chattopadhyay N, Singh D. Estrogen deficiency induces the differentiation of IL-17 secreting Th17 cells: a new candidate in the pathogenesis of osteoporosis. PLoS ONE 2012;7(9):e44552. https://doi.org/10.1371/journal.pone.0044552
  38. Boyce BF, Xing L. Functions of RANKL/RANK/OPG in bone modeling and remodeling. Arch Biochem Biophys 2008;473(2):139-46. https://doi.org/10.1016/j.abb.2008.03.018
  39. Kearns AE, Khosla S, Kostenuik PJ. Receptor activator of nuclear factor kappaB ligand and osteoprotegerin regulation of bone remodeling in health and disease. Endocr Rev 2008;29(2):155-92. https://doi.org/10.1210/er.2007-0014
  40. Asagiri M, Takayanagi H. The molecular understanding of osteoclast differentiation. Bone 2007;40(2):251-64. https://doi.org/10.1016/j.bone.2006.09.023