DOI QR코드

DOI QR Code

칼륨 페레이트에 의한 Eriochrome Black T 분해 연구

Degradation of eriochrome black T by potassium ferrate (VI)

  • 황민원 (부경대학교 환경공학과) ;
  • 김일규 (부경대학교 환경공학과)
  • Hoang, Nguyen Minh (Department of Environmental Engineering, Pukyong National University) ;
  • Kim, Il-Kyu (Department of Environmental Engineering, Pukyong National University)
  • 투고 : 2022.03.10
  • 심사 : 2022.05.10
  • 발행 : 2022.06.15

초록

수용액에서 EBT의 분해는 pH, Ferrate (VI) 투입량, 초기 농도, 수용액 온도 등 다양한 변수의 조건에서 연구되었다. 최대 분해 효율은 pH 7.0에서 95.42%가 달성되었으며, 이 실험 조건에서 얻은 kapp 값은 872.87 M-1s-1 이었다. EBT 분해율은 Ferrate (VI)의 투입량이 증가함에 따라 증가하였으며 EBT 초기 농도가 감소함에 따라 EBT 분해의 초기 속도 상수가 증가하였다. 또한 EBT의 분해율은 온도가 10℃에서 45℃에 도달할 때까지 수용액의 온도에 따라 증가하였으며 이 실험조건에서 활성화 에너지 값은 EBT 분해에 대해 11.9 kJ/mol의 값이 도출되었다. 따라서 분해 실험의 결과는 Ferrate (VI)가 수용액상에서 EBT를 효과적으로 분해시킬 수 있음을 보여주고 있다.

The degradation of EBT (Eriochrome Black T) in an aqueous solution was investigated at various values of pH, Ferrate (VI) dosage, initial concentration, aqueous solution temperature. The maximum degradation efficiency was 95.42% at pH 7 and in that experimental condition, the kapp value was 872.87 M-1s-1. The degradation efficiency was proportional to the dosage of Ferrate (VI). Also, the initial rate constant of EBT degradation increased with decreasing of the EBT initial concentration. In addition, the degradation rate of EBT was increased from 74.04% to 95.42% when the temperature in the aqueous solution was increased from 10℃ to 45℃. The activation energy value was 11.9 kJ/mol for EBT degradation. Overall, the results of the degradation experiment showed that Ferrate (VI) could effectively oxidize the EBT in the aqueous phase.

키워드

참고문헌

  1. Acosta-Rangel, A., Sanchez-Polo, M., Rozalen, M., RiveraUtrilla, J., Polo, A.M.S., Berber-Mendoza, M.S. and Lopez-Ramon, M.V. (2020). Oxidation of sulfonamides by ferrate (VI): Reaction kinetics, transformation byproducts and toxicity assesment, J. Environ. Manag., 255.
  2. Carneiro, P.A., Nogueira, R.F.P. and Zanoni, M.V.B. (2007). Homogeneous photodegradation of C.I. Reactive Blue 4 using a photo-Fenton process under artificial and solar irradiation, Dyes Pigm., 74, 127-132. https://doi.org/10.1016/j.dyepig.2006.01.022
  3. Chung, K.T. and Stevens, S.E. (1993). Decolourization of azo dyes by environmental microorganisms and helminths, Environ. Toxicol. Chem., 12, 2121 2132.
  4. Huang, Z.S. (2021). Ferrate self-decomposition in water is also a self-activation process: Role of Fe(V) species and enhancement with Fe(III) in methyl phenyl sulfoxide oxidation by excess ferrate, Water Res., 197.
  5. Ivanenko, O. (2020). Application of potassium ferrate in water treatment processes, J. Ecol. Eng., 21, 134 140.
  6. Jiang, J.Q. and Lloyd, B. (2005). Progress in the development and use of Ferrate (VI) salt as an oxidant and coagulant for water and wastewater treatment, Water Res., 36(6), 1397-1408. https://doi.org/10.1016/S0043-1354(01)00358-X
  7. Jiang, J.Q., Wang, S. and Panagoulopoulos, A. (2005). The exploration of Potassium Ferrate (VI) as a disinfectant/coagulant in water and wastewater treatment, Chemosphere, 63(2), 212-219.
  8. Jiang, J.Q. (2007). Research progress in the use of Ferrate (VI) for the environmental remediation, J. Hazard. Mater., 146(3), 617-623. https://doi.org/10.1016/j.jhazmat.2007.04.075
  9. Kovalakova, P. (2021). Oxidation of antibiotics by ferrate (VI) in water: Evaluation of their removal efficiency and toxicity changes, Chemosphere, 277.
  10. Li, C., Li, X.Z. and Graham, N. (2005). A study of the preparation and reactivity of potassium Ferrate, Chemosphere, 61(4), 537-543. https://doi.org/10.1016/j.chemosphere.2005.02.027
  11. Li, Y., Jiang, L., Wang, R., Wu, P., Liu, J., Yang, S., Liang, J., Lu, G., and Zhu, N. (2021). Kinetics and mechanisms of phenolic compounds by ferrate (VI) assisted with density functional theory, J. Hazard. Mater., 415, 33-42.
  12. Li, Y., Wu, P., Lu, J., WU, Y. (2020). Progress on application of ferrate(VI) for the environmental remediation, 34, 3-9.
  13. Liu, H., Pan, X., Chen, J., Qi, Y., Qu, R., and Wang, Z. (2019). Kinetics and mechanism of the Oxidative Degradation of Parathion by Ferrate (VI), Chem. Eng. J., 365, 142-152. https://doi.org/10.1016/j.cej.2019.02.040
  14. Machala, L., Zboril, R., Sharma, V.K., Filip, J., Jancil, D., and Homonnay, Z. (2009). Transformation of solid potassium ferrate (VI) (K2FeO4): Mechanism and kinetic effect of air humidity, Eur. J. Inorg. Chem., 8, 1060 1067.
  15. Moradnia, M., Panahifard, M., Dindarlo, K. and Hamzeh, A.J. (2016). Optimizing Potassium Ferrate for textile wastewater treatment by RSM, Environ. Health Eng. Manag., 33, 137-142.
  16. Moore, S.B. and Ausley, L.W. (2002). Systems thinking and green chemistry in the textile industry: concepts, technologies and benefits, J. Clean. Prod., 12, 585-601. https://doi.org/10.1016/S0959-6526(03)00058-1
  17. Ogugbue, C.J. and Sawidis, T. (2021). Bioremediation and detoxification of synthetic wastewater containing triarylmethane dyes by aeromonas hydrophila isolated from industrial effluent, Biotechnol. Res. Int., 2011, 01-11. https://doi.org/10.4061/2011/967925
  18. Paixao, K., Abreu, E., Samanamud, G.R.L., Franca, A.B., Loures, C.C.A., Baston, E.P., Naves, L.L.R., Bosch, J.C. and Naves, F.L (2019). Normal boundary intersection applied in the scale-up for the treatment process of Eriochrome Black T through the UV/TiO2/O3 system, J. Environ. Chem. Eng., 7, 102801.
  19. Robinson, T,G. McMullan, Marchant, R. and Nigam, P. (2001). Remediation of dyes in textile effluent: a critical review on current treatment technologies with a proposed alternative, Bioresour. Technol., 77(3), 247 255.
  20. Sharma, V.K. (2002). Potassium ferrate (VI): an environmentally friendly oxidant, Adv. Environ. Res., 6(2), 143-156. https://doi.org/10.1016/S1093-0191(01)00119-8
  21. Sharma, V.K., Yngard, R.A., Cabelli, D.E., and Clayton, J. (2008). Ferrate (VI) and Ferrate (V) oxidation of cyanide, thiocyanate, and copper(I) cyanide, Radiat. Phys. Chem., 77(6), 761-767. https://doi.org/10.1016/j.radphyschem.2007.11.004
  22. Sharma, V.K. (2013). Ferrate (VI) and Ferrate (V) Oxidation of Organic Compounds: Kinetics and Mechanism, Coord. Chem. Rev., 257, 495-510. https://doi.org/10.1016/j.ccr.2012.04.014
  23. Talaiekhozani, A., Bagheri, M., Talaie khozani, M.R., Jaafarzadeh, N. (2016). An Overview on Production and Applications of Ferrate (VI), Jundishapur J. Health Sci., 5, 1828 1842.
  24. Thomas, M., Drzewicz, P., Wieckol-Ryk, A., Panneerselvam, B. (2021). Influence of elevated temperature and pressure on treatment of landfill leachate by potassium ferrate (VI), Water Air Soil Pollut., 232, 450.
  25. Thompson, J.E., Ockerman, L.T. and Schreyer, J.M. (1951). Preparation and purification of potassium ferrate (VI), J. Am. Chem. Soc., 73, 1379-1381.
  26. Wagner, W.F., Gump, J.R., and Hart, E.N. (1952). Factors affecting stability of aqueous potassium ferrate (VI) solutions, Anal. Chem., 24, 1497-1498. https://doi.org/10.1021/ac60069a037
  27. Wang, J., Zheng, T., Cai, C., Zhang, Y., and Liu, H. (2019). Oxidation of ethanethiol in aqueous alkaline solution by ferrate (VI): Kinetics, stoichiometry and mechanism, Chem. Eng. J., 361, 1557-1564. https://doi.org/10.1016/j.cej.2018.11.005
  28. Wei, Y.L., Wang, Y.S. and Liu, C.H. (2015). Preparation of potassium ferrate from spent steel pickling liquid, Metals., 5(4), 1770-1787. https://doi.org/10.3390/met5041770
  29. Yang, B., Ying, G.G., Zhang, L.J., Zhou, L.J., Liu, S., and Fang, Y.X. (2011). Kinetics modeling and reaction mechanism of ferrate (VI) oxidation of benzotriazoles, Water Res., 45, 2261-2269. https://doi.org/10.1016/j.watres.2011.01.022
  30. Zhang, W. (2020). Effectiveness analysis of potassium ferrate pretreatment on the disintegration of waste activated sludge, Res. Environ. Sci., 33, 1045-1051.
  31. Zheng, L. (2020). Chemically enhanced primary treatment of municipal wastewater with ferrate (VI), Water Environ. Res., 93, 817-825. https://doi.org/10.1002/wer.1473
  32. Zollinger, H. (1987). Synthesis, properties of Organic Dyes and Pigments. In: Color Chemistry, New York, USA: VCH Publishers, 92-102.