DOI QR코드

DOI QR Code

도로표지에 대한 LiDAR 검지영향요인 연구: 도로표지의 모양과 높이를 중심으로

A Research of Factors Affecting LiDAR's Detection on Road Signs: Focus on Shape and Height of Road Sign

  • 김지윤 (한국건설기술연구원 도로교통연구본부) ;
  • 박범진 (한국건설기술연구원 도로교통연구본부)
  • Kim, Ji yoon (Dept. of Highway & Transportation Research, KICT) ;
  • Park, Bum jin (Dept. of Highway & Transportation Research, KICT)
  • 투고 : 2022.08.11
  • 심사 : 2022.08.24
  • 발행 : 2022.08.31

초록

본 연구는 자율주행차량의 필수 센서로 인식되는 LiDAR로 도로표지를 검지할 시, 도로표지의 모양과 높이 등이 검지성능에 주는 영향에 대하여 알아보았다. 연구를 위해 면적과 재질은 동일하고, 모양은 서로 다른 도로표지를 4종을 제작하였으며, 32Ch 회전형 LiDAR를 차량 상단부에 장착하여 도로주행실험을 수행하였다. 도로표지의 모양에 따른 점군데이터의 형상과 NPC를 비교한 결과, 32ch LiDAR를 활용하여 도로표지의 전체 모양을 인식하려면 40m 이내의 거리가 필요할 것으로 기대되며, 원거리에서 최대한 점군을 확보하는 데 있어서는 정사각형보다는 삼각형, 직사각형 등의 형상이 유리하였다. 도로표지의 높이에 따른 연구 결과, 근거리(20m이내)에서는 표지의 높이를 2m 이상으로 올리면 LiDAR의 수직시야각에서 이탈하여 완전한 점군 형상을 표현하지 못하게 되며, 차로변화로 센서와 표지 사이의 횡간격과 입사각이 커지게 되면 NPC가 소폭 감소하나 근거리 높이 변화에 비하면 미미한 영향을 보였다. 이러한 연구결과는 자율협력주행기술 상용화를 위한 LiDAR 전용 도로시설물 개발에 활용될 수 있을 것으로 기대된다.

This study investigated the effect of the shape and height of road signs on detection performance when detecting road signs with LiDAR, which is recognized as an essential sensor for autonomous vehicles. For the study, four types of road signs with the same area and material and different shapes were produced, and a road driving test was performed by installing a 32Ch rotating LiDAR on the upper part of the vehicle. As a result of comparing the shape of the point cloud and the NPC according to the shape of the road sign, It is expected that a distance of less than 40m is required to recognize the overall shape of a road sign using 32Ch LiDAR, and shapes such as triangles and rectangles are more advantageous than squares in securing the maximum point cloud from a long distance. As a result of the study according to the height of the road sign, At short distances (within 20m), if the height of the sign is raised to more than 2m, it deviates from the vertical viewing angle of the LiDAR and cannot express the complete point cloud shape. However, it showed a negligible effect compared to the near-field height change. These research results are expected to be utilized in the development of road facilities dedicated to LiDAR for the commercialization of autonomous cooperative driving technology.

키워드

과제정보

본 연구는 국토교통부/국토교통과학기술진흥원의 지원으로 수행되었음(과제번호 21AMDP-C161924-01, 주관연구기관 과제명: 크라우드 소싱 기반의 디지털 도로교통 인프라 융합플랫폼 기술 개발 / 공동연구기관 과제명: 도로·교통 인프라 성능평가 방법론 개발 및 자율차 기반의 개발 인프라 검증)

참고문헌

  1. Al-Nuaimi, A., Lopes, W., Zeller, P., Garcea, A., Lopes, C. and Steinbach, E.(2016), "Analyzing LiDAR scan skewing and its impact on scan matching", In 2016 International Conference on Indoor Positioning and Indoor Navigation(IPIN), IEEE, pp.1-8.
  2. Chen, C., Fragonara, L. Z. and Tsourdos, A.(2021), "RoIFusion: 3D Object Detection From LiDAR and Vision", IEEE Access, vol. 9, pp.51710-51721. https://doi.org/10.1109/ACCESS.2021.3070379
  3. Goodin, C., Carruth, D., Doude, M. and Hudson, C.(2019), "Predicting the Influence of Rain on LiDAR in ADAS", Electronics, vol. 8, no. 1, p.89, doi: 10.3390/electronics8010089
  4. Guan, H., Li, J. and Yu, Y.(2016), "Use of mobile LiDAR in Road information inventory: A review", International Journal of Image and Data Fusion, vol. 7, no. 3, pp.219-242. https://doi.org/10.1080/19479832.2016.1188860
  5. He, L., Jin, Z. and Gao, Z.(2020), "De-Skewing LiDAR Scan for Refinement of Local Mapping", Sensors, vol. 20, no. 7, p.1846.
  6. GSA, https://www.gsaglobal.org/forums/autonomous-driving-and-sensor-fusion-socs/, 2202.08.05.
  7. Jeon, H. and Kim, J.(2021), "Analysis on Handicaps of Automated Vehicle and Their Causes using IPA and FGI", Journal of Korea Institute Intelligent Transportation System, vol. 20, no. 3, pp.34-46. https://doi.org/10.12815/kits.2021.20.3.34
  8. Kang, N., Sa, S., Ryu, M., Oh, S., Lee, C., Cho, H. and Park, I.(2021), "Scan Matching based De-skewing Algorithm for 2D Indoor PCD captured from Mobile Laser Scanning", Korea Journal of Construction Engineering and Management(KJCEM), vol. 22, no. 3, pp.40-51.
  9. Kim, J. and Park, B.(2022), "A Study of LiDAR's Detection Performance Degradation in Fog and Rain Climate", Journal of Korea Institute Intelligent Transportation System, vol. 21, no. 2, pp.101-115. https://doi.org/10.12815/kits.2022.21.2.101
  10. Kim, J., Park, B., Roh, C. and Kim, Y.(2021), "Performance of Mobile LiDAR in the Real Road Driving Conditions", Sensors, vol. 21, no. 22, 7461, doi: 10.3390/s2201010
  11. Kim, W. K.(2020), "Main Contents and Future Plans of the Automated Driving Technology Development Innovation Project", Monthly KOTI Magazine on Transportation, vol. 272, pp.27-35.
  12. Korea Institute Construction and Technology(KICT)(2021), Improved Road Infrastructures to Strengthen Driving Safety of Automated Driving Car Final Report.
  13. Kutila, M., Pyykonen, P., Ritter, W., Sawade, O. and Schaufele, B.(2016) "Automative LiDAR Sensor Development Scenarios for Harsh Weather Conditions", IEEE 19th International Conference on Intelligent Transportation Systems(ITSC), Rio De Janeiro, Brazil, IEEE, Newyork, pp.265-270.
  14. Li, Y. and Ibanez-Guzman, J.(2020), "LiDAR for autonomous driving: The principles, challenges, and trends for automotive LiDAR and perception systems", IEEE Signal Processing Magazine, vol. 37, no. 4, pp.50-61.
  15. Montalban, K., Reymann, C., Atchuthan, D., Dupouy, P. E., Riviere, N. and Lacroix, S.(2021), "A Quantitative Analysis of Point Clouds from Automotive LiDARs Exposed to Artificial Rain and Fog", Atmosphere, vol. 12, no. 6, p.738.
  16. Park, B. and Kim, J.(2021), " A Study of LiDAR's Performance Change by Road Sign's Color and Climate", Journal of Korea Institute Intelligent Transportation System, vol. 20, no. 6, pp.228-241. https://doi.org/10.12815/kits.2021.20.6.228
  17. Park, B.(2022), "Method of improvements for autonomous vehicle road-traffic facilities using LiDAR", The Korea Institute of Intelligent Transportation Systems(KITS) International Conference Special Session B-5.
  18. Stock, K.(2018.09.17), Self-Driving Cars Can Handle Neither Rain nor Sleet nor Snow, Bloomberg Businessweek.
  19. Tang, L., Shi, Y., He, Q., Sadek, A. W. and Qiao, C.(2020), "Performance Test of Autonomous Vehicle LiDAR Sensors Under Different Weather Conditions", Transportation Research Record, vol. 2674, no. 1, pp.319-329.