DOI QR코드

DOI QR Code

Current Status and Necessity of Separation Technology to Secure Vanadium Mineral Resources

바나듐 광물자원 확보를 위한 선별 기술 현황 및 필요성

  • Jeon, Hoseok (Mineral Processing & Metallurgy Research Center, Resources Utilization Division, Korea Institute of Geoscience and Mineral Resources (KIGAM)) ;
  • Han, Yosep (Mineral Processing & Metallurgy Research Center, Resources Utilization Division, Korea Institute of Geoscience and Mineral Resources (KIGAM)) ;
  • Baek, Sangho (Mineral Processing & Metallurgy Research Center, Resources Utilization Division, Korea Institute of Geoscience and Mineral Resources (KIGAM)) ;
  • Davaadorj, Tsogchuluun (Mineral Processing & Metallurgy Research Center, Resources Utilization Division, Korea Institute of Geoscience and Mineral Resources (KIGAM)) ;
  • Go, Byunghun (Mineral Processing & Metallurgy Research Center, Resources Utilization Division, Korea Institute of Geoscience and Mineral Resources (KIGAM)) ;
  • Jeong, Dohyun (Mineral Processing & Metallurgy Research Center, Resources Utilization Division, Korea Institute of Geoscience and Mineral Resources (KIGAM)) ;
  • Chu, Yeoni (Mineral Processing & Metallurgy Research Center, Resources Utilization Division, Korea Institute of Geoscience and Mineral Resources (KIGAM)) ;
  • Kim, Seongmin (Mineral Processing & Metallurgy Research Center, Resources Utilization Division, Korea Institute of Geoscience and Mineral Resources (KIGAM))
  • 전호석 (한국지질자원연구원 자원활용연구본부 자원회수연구센터) ;
  • 한요셉 (한국지질자원연구원 자원활용연구본부 자원회수연구센터) ;
  • 백상호 (한국지질자원연구원 자원활용연구본부 자원회수연구센터) ;
  • 척거 (한국지질자원연구원 자원활용연구본부 자원회수연구센터) ;
  • 고병헌 (한국지질자원연구원 자원활용연구본부 자원회수연구센터) ;
  • 정도현 (한국지질자원연구원 자원활용연구본부 자원회수연구센터) ;
  • 추연이 (한국지질자원연구원 자원활용연구본부 자원회수연구센터) ;
  • 김성민 (한국지질자원연구원 자원활용연구본부 자원회수연구센터)
  • Received : 2022.03.23
  • Accepted : 2022.04.05
  • Published : 2022.04.30

Abstract

Owing to the global development of high-strength alloys and renewable energy industries, the demand for vanadium, a key raw material in these industries, is expected to increase. Until now, vanadium has been recovered as a by-product of the industry, but interest in its direct recovery from minerals has increasing with its significantly increasing demand. In particular, the recovery of vanadium from stone coal ore and vanadium titano-magnetite (VTM) containing vanadium has been actively researched in China, which has the largest reserves and production of vanadium in the world. In Korea, a large amount of VTM also occurs in the northern part of Gyeonggi-do, and fundamental research and technical development is being conducted to recover vanadium. It is necessary to understand the current status of the separation technology used worldwide to satisfy the demand for metals such as vanadium, which currently depends on imports.

전 세계적으로 고강도 합금 및 신재생에너지 산업의 수요 증가로 인하여 핵심 원료인 바나듐의 수요가 증가할 것으로 기대된다. 이에 따라, 지금까지 바나듐은 다른 산업의 부산물로 회수되었으나, 직접적인 개발에 대한 이목이 집중되고 있다. 특히, 매장량과 생산량이 가장 많은 중국에서는 함바나듐 무연탄광과 티탄철광으로부터 바나듐을 회수하는 연구가 활발하게 수행되고 있다. 국내에도 경기 북부 지역에 함바나듐 티탄철광이 대량 부존되어 있다고 알려져, 이를 개발하고자 하는 기초 및 실증연구가 수행되고 있다. 따라서 본 총설에서는 국내외 바나듐 선별 기술 현황을 조사하여 소개하였으며, 이를 토대로 현재 전량 수입에 의존하고 있는 바나듐에 대한 자립 수급의 필요성을 알리고자 한다.

Keywords

Acknowledgement

본 연구는 한국지질자원연구원 주요사업인 '국내 부존 바나듐(V) 광물자원 선광/제련/활용기술 개발(GP2020-013, 22-3212)', 산업통상자원부(MOTIE)와 한국에너지기술평가원(KETEP)의 지원을 받아 수행한 연구 과제입니다(No.20216110100040).

References

  1. Han, Y., Kim, S., Go, B., et al., 2021 : Optimized magnetic separation for efficient recovery of V and Ti enriched concentrates from vanadium-titanium magnetite ore: Effect of grinding and magnetic intensity, Powder Technology, 291, pp.282-291.
  2. Gilligan, R., Nikoloski, A.N., 2020 : The extraction of vanadium from titanomagnetites and other sources, Minerals Engineering, 146, pp.106106-106123. https://doi.org/10.1016/j.mineng.2019.106106
  3. Silin, I., Hahn, K.M., Gursel, D., et al., 2020 : Mineral Processing and Metallurgical Treatment of Lead Vanadate Ores, Minerals, 10(2), pp.197-226. https://doi.org/10.3390/min10020197
  4. Guo, X., Dai, S., Wang, Q., Influence of different comminution flowsheets on the separation of vanadium titanomagnetite, Mineral Engineering, 149, pp.106268-106275.
  5. Peng, H., 2019 : A literature review on leaching and recovery of vanadium, Journal of Environmental Chemical Engineering, 7(5), pp.103313-103319. https://doi.org/10.1016/j.jece.2019.103313
  6. Wang, L., Sun, W., Zhang, Q.P., 2015 : Recovery of vanadium and carbon from low-grade stone coal by flotation, Transactions of Nonferrous Metals Society of China, 25, pp.3767-3773. https://doi.org/10.1016/S1003-6326(15)64020-1
  7. Yan, V., Wang, D., Wu, L., et al., 2018 : A novel approach for pre-concentrating vanadium from stone coal ore, Minerals Engineering, 125, pp.231-238. https://doi.org/10.1016/j.mineng.2018.06.005
  8. Heo, S.J., Jeon, J.H., Kim, R., et al., 2021 : Separation of Vanadium and Tungsten from Spent SCR DeNOX Catalyst by Ion-exchange Column, Journal of Korean Institute of Resources Recycling, 30(4), pp.54-63. https://doi.org/10.7844/kirr.2021.30.4.54
  9. Shin, D.J., Joo, S.H., Lee, D., et al., 2021 : Vanadium Leaching Behavior from Domestic Vanadium Bearing Titanomagnetite Ore through CaO Roasting, Journal of Korean Institute of Resources Recycling, 30(4), pp.27-34. https://doi.org/10.7844/kirr.2021.30.4.27
  10. Joo, S.H., Shin, D.J., Lee, D., et al., 2022 : Leaching Behavior of Vanadium and Possibility of Recovery of Valuable Metals from VTM Concentrate by Sulfuric Acid Leaching, Journal of Korean Institute of Resources Recycling, 31(1), pp.65-77. https://doi.org/10.7844/kirr.2022.31.1.65
  11. Jo, S., Kim, J.I., Han, H.J., et al., 2021 : Reductive Precipitation of Vanadate by Shewanella putrefaciens and Its Applicability to Vanadium Redox Flow Battery, Journal of The Korean Society of Mineral and Energy Resources Engineers, 58(1), pp.54-60. https://doi.org/10.32390/ksmer.2021.58.1.054
  12. Han, Y., Go, B., Kim, S., et al., 2021 : Magnetic Separation Behavior of V, Ti, and Fe of Fractured Products from Domestic Vanadium Titanium-Magnetite (VTM) Ore, Journal of The Korean Society of Mineral and Energy Resources Engineers, 58(1), pp.10-16. https://doi.org/10.32390/ksmer.2021.58.1.010
  13. Lee, S.H., Chung, K.W., 2021 : Feasibility of Applying a Rotary Kiln to Roast Vanadium in Domestic Titanium-Magnetite Ore, Journal of The Korean Society of Mineral and Energy Resources Engineers, 58(1), pp.30-36. https://doi.org/10.32390/ksmer.2021.58.1.030
  14. Jeon, H.S., Baek, S.H., Han, Y., et al., 2021 : Developing Technology Necessary to Produce Domestic Vanadium Resources, Journal of The Korean Society of Mineral and Energy Resources Engineers, 58(1), pp.66-74. https://doi.org/10.32390/ksmer.2021.58.1.066
  15. Go, B., Han, Y., Jeong, D., et al., 2021 : Development of Separation Technique for the Production of Vanadium from Domestic Vanadium Titanomagnetite Ore, Journal of The Korean Society of Mineral and Energy Resources Engineers, 58(1), pp.2-9. https://doi.org/10.32390/ksmer.2021.58.1.002
  16. Kim, S.K., Kwon, S., Hong, H.J., et al., 2021 : Study on the Manufacture of High-purity Vanadium Pentoxide and Electrolyte for a Vanadium Redox Flow Battery, Journal of The Korean Society of Mineral and Energy Resources Engineers, 58(1), pp.44-53. https://doi.org/10.32390/ksmer.2021.58.1.044
  17. Kim, S.M., Jeong, H.S., 2019 : Separation Processes for Self-Sufficient Recovery of Vanadium Resources in Korea, Journal of The Korean Society of Mineral and Energy Resources Engineers, 56(3), pp.292-302. https://doi.org/10.32390/ksmer.2019.56.3.292
  18. Kim, Y., Lee, H., Park, H., et al., 2021 : Thermodynamic Analysis of Alkali-Roasting Process for Vanadium Extraction Process, Journal of The Korean Society of Mineral and Energy Resources Engineers, 58(1), pp.25-29. https://doi.org/10.32390/ksmer.2021.58.1.025
  19. Kim, B.S., Ryu, T.G., Chang, H., et al., 2021 : Fundamental Study on the Pyrometallurgical Purification of Vanadium Pentoxide (V2O5), Journal of The Korean Society of Mineral and Energy Resources Engineers, 58(1), pp.37-43. https://doi.org/10.32390/ksmer.2021.58.1.037
  20. Lee, S., 2020 : A Review on Types of Vanadium Deposits and Process Mineralogical Characteristics, Journal of The Korean Society of Mineral and Energy Resources Engineers, 57(6), pp.640-651. https://doi.org/10.32390/ksmer.2020.57.6.640
  21. Kim, R., Kim, M.S., Lee, J.C., et al., 2021: Optimization of Soda ash Roasting-water Leaching Conditions for Vanadium Recovery from a Vanadium-bearing Titaniferous Magnetite Ore, Journal of The Korean Society of Mineral and Energy Resources Engineers, 58(1), pp.17-24. https://doi.org/10.32390/ksmer.2021.58.1.017
  22. USGS (U.S. Geological Survey), 2022 : Mineral Commodity Summaries 2022, Reston, Virginia, U.S.A., pp.182-183.
  23. KOMIS (Korea Mineral Resource Information Service), 2022, Mineral Prices, www.kores.net
  24. Xu, C., Zhang, Y., Liu, T., et al., 2017 : Characterization and Pre-Concentration of Low-Grade Vanadium-Titanium Magnetite Ore, Minerals, 7(8), pp. 137-147.
  25. Qin, J., Wang, Y., You, Z., et al., 2020 : Carbonization and nitridation of vanadium-bearing titanomagnetite during carbothermal reduction with coal, Journal of Materials Research and Technology, 9(3), pp.4272-4282. https://doi.org/10.1016/j.jmrt.2020.02.053
  26. Li, X.H., Kou, J., Sun, T.C., et al., 2020 : Effects of calcium compounds on the carbothermic reduction of vanadium titanomagnetite concentrate, International Journal of Minerals, Metallurgy and Materials, 27(3), pp.301-309. https://doi.org/10.1007/s12613-019-1864-z
  27. Xing, X., Du, Y., Zheng, J., et al., 2020 : Experimental Study on Strengthening Carbothermic Reduction of Vanadium-Titanium-Magnetite by Adding CaF2, Minerals, 10(3), pp.219-229. https://doi.org/10.3390/min10030219
  28. Hu, Q., Ma, D., Zhou, K., et al., 2022 : Phase transformation and slag evolution of vanadium-titanium magnetite pellets during softening-melting process, Powder Technology, 396, pp.710-717. https://doi.org/10.1016/j.powtec.2021.11.035
  29. Liu, L., Li, G., Zhao, L., 2022 : Recovery of Fe and V via selective reduction-magnetic separation of vanadium-titanium magnetite concentrate, Physicochemical Problems of Mineral Processing, 58(1), pp.50-62.
  30. Zhao, Y., Zhang, Y., Bao, S., et al., 2013 : Separation factor of shaking table for vanadium pre-concentration from stone coal, Separation and Purification Technology, 115, pp.92-99. https://doi.org/10.1016/j.seppur.2013.04.017
  31. Wang, L., Sun, W., Liu, R.Q., et al., 2014 : Flotation recovery of vanadium from low-grade stone coal, Transactions of Nonferrous Metals Society of China, 24, pp. 1145-1151. https://doi.org/10.1016/S1003-6326(14)63173-3
  32. Liu, X., Zhang, Y., Liu, T., et al., 2016 : Pre-Concentration of V anadium from S tone C oal by G rav ity Using Fine Mineral Spiral, Minerals, 6(3), pp.82-92.
  33. Zhao, Y., Zhang, Y., Liu, T., et al., 2013 : Pre-concentration of vanadium from stone coal by gravity separation, International Journal of Mineral Processing, 121, pp.1-5. https://doi.org/10.1016/j.minpro.2013.02.014
  34. Wang, M., Huang, S., Chen, B., et al., 2018 : A review of processing technologies for vanadium extraction from stone coal, Mineral Processing and Extractive Metallurgy, 129, pp.290-298. https://doi.org/10.1080/25726641.2018.1505207