DOI QR코드

DOI QR Code

CKD-581 Downregulates Wnt/β-Catenin Pathway by DACT3 Induction in Hematologic Malignancy

  • Kim, Soo Jin (College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University) ;
  • Kim, Suntae (College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University) ;
  • Choi, Yong June (College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University) ;
  • Kim, U Ji (CKD Research Institution, Chong Kun Dang Pharmaceutical Corporation) ;
  • Kang, Keon Wook (College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University)
  • Received : 2022.02.11
  • Accepted : 2022.05.20
  • Published : 2022.09.01

Abstract

The present study evaluated the anti-cancer activity of histone deacetylase (HDAC)-inhibiting CKD-581 in multiple myeloma (MM) and its pharmacological mechanisms. CKD-581 potently inhibited a broad spectrum of HDAC isozymes. It concentration-dependently inhibited proliferation of hematologic cancer cells including MM (MM.1S and RPMI8226) and T cell lymphoma (HH and MJ). It increased the expression of the dishevelled binding antagonist of β-catenin 3 (DACT3) in T cell lymphoma and MM cells, and decreased the expression of c-Myc and β-catenin in MM cells. Additionally, it enhanced phosphorylated p53, p21, cleaved caspase-3 and the subG1 population, and reversely, downregulated cyclin D1, CDK4 and the anti-apoptotic BCL-2 family. Finally, administration of CKD-581 exerted a significant anti-cancer activity in MM.1S-implanted xenografts. Overall, CKD-581 shows anticancer activity via inhibition of the Wnt/β-catenin signaling pathway in hematologic malignancies. This finding is evidence of the therapeutic potential and rationale of CKD-581 for treatment of MM.

Keywords

Acknowledgement

This work was supported by the National Research Foundation of Korea (NRF) grant funded by Korean Government (2021R1A4A1021787).

References

  1. Beltran, A. S., Russo, A., Lara, H., Fan, C., Lizardi, P. M. and Blancafort, P. (2011) Suppression of breast tumor growth and metastasis by an engineered transcription factor. PLoS ONE 6, e24595.
  2. Bergsagel, P. L. and Kuehl, W. M. (2005) Molecular pathogenesis and a consequent classification of multiple myeloma. J. Clin. Oncol. 23, 6333-6338. https://doi.org/10.1200/JCO.2005.05.021
  3. Bjorklund, C. C., Ma, W., Wang, Z. Q., Davis, R. E., Kuhn, D. J., Kornblau, S. M., Wang, M., Shah, J. J. and Orlowski, R. Z. (2011) Evidence of a role for activation of Wnt/beta-catenin signaling in the resistance of plasma cells to lenalidomide. J. Biol. Chem. 286, 11009-11020. https://doi.org/10.1074/jbc.M110.180208
  4. Bordonaro, M., Lazarova, D. L. and Sartorelli, A. C. (2007) The activation of beta-catenin by Wnt signaling mediates the effects of histone deacetylase inhibitors. Exp. Cell Res. 313, 1652-1666. https://doi.org/10.1016/j.yexcr.2007.02.008
  5. Burger, H., Nooter, K., Boersma, A. W., Kortland, C. J. and Stoter, G. (1998) Expression of p53, Bcl-2 and Bax in cisplatin-induced apoptosis in testicular germ cell tumour cell lines. Br. J. Cancer 77, 1562-1567. https://doi.org/10.1038/bjc.1998.257
  6. Chien, A. J., Moore, E. C., Lonsdorf, A. S., Kulikauskas, R. M., Rothberg, B. G., Berger, A. J., Major, M. B., Hwang, S. T., Rimm, D. L. and Moon, R. T. (2009) Activated Wnt/beta-catenin signaling in melanoma is associated with decreased proliferation in patient tumors and a murine melanoma model. Proc. Natl. Acad. Sci. U.S.A. 106, 1193-1198. https://doi.org/10.1073/pnas.0811902106
  7. Cho, H., Yoon, D. H., Kim, K. P., Bae, K. S., Kim, W. S., Eom, H. S., Kim, J. S., Hong, J. Y., Kim, S. J., Lee, H., Kim, S. J. and Suh, C. (2018) Phase I study of CKD-581, a pan-histone deacetylase inhibitor, in patients with lymphoma or multiple myeloma refractory to standard therapy. Invest. New Drugs 36, 877-885. https://doi.org/10.1007/s10637-018-0582-0
  8. Daisy Precilla, S., Biswas, I., Kuduvalli, S. S. and Anitha, T. S. (2022) Crosstalk between PI3K/AKT/mTOR and WNT/beta-Catenin signaling in GBM - could combination therapy checkmate the collusion? Cell. Signal. 95, 110350.
  9. Dawson, M. A. and Kouzarides, T. (2012) Cancer epigenetics: from mechanism to therapy. Cell 150, 12-27. https://doi.org/10.1016/j.cell.2012.06.013
  10. de la Puente, P., Muz, B., Azab, F., Luderer, M. and Azab, A. K. (2014) Molecularly targeted therapies in multiple myeloma. Leuk. Res. Treatment 2014, 976567.
  11. Elsheikh, S. E., Green, A. R., Rakha, E. A., Powe, D. G., Ahmed, R. A., Collins, H. M., Soria, D., Garibaldi, J. M., Paish, C. E., Ammar, A. A., Grainge, M. J., Ball, G. R., Abdelghany, M. K., Martinez-Pomares, L., Heery, D. M. and Ellis, I. O. (2009) Global histone modifications in breast cancer correlate with tumor phenotypes, prognostic factors, and patient outcome. Cancer Res. 69, 3802-3809. https://doi.org/10.1158/0008-5472.CAN-08-3907
  12. Fisher, D. A., Kivimae, S., Hoshino, J., Suriben, R., Martin, P. M., Baxter, N. and Cheyette, B. N. (2006) Three Dact gene family members are expressed during embryonic development and in the adult brains of mice. Dev. Dyn. 235, 2620-2630. https://doi.org/10.1002/dvdy.20917
  13. Fraga, M. F., Ballestar, E., Villar-Garea, A., Boix-Chornet, M., Espada, J., Schotta, G., Bonaldi, T., Haydon, C., Ropero, S., Petrie, K., Iyer, N. G., Perez-Rosado, A., Calvo, E., Lopez, J. A., Cano, A., Calasanz, M. J., Colomer, D., Piris, M. A., Ahn, N., Imhof, A., Caldas, C., Jenuwein, T. and Esteller, M. (2005) Loss of acetylation at Lys16 and trimethylation at Lys20 of histone H4 is a common hallmark of human cancer. Nat. Genet. 37, 391-400. https://doi.org/10.1038/ng1531
  14. Gabay, M., Li, Y. and Felsher, D. W. (2014) MYC activation is a hallmark of cancer initiation and maintenance. Cold Spring Harb. Perspect. Med. 4, a014241.
  15. Giuliani, N., Accardi, F., Marchica, V., Dalla Palma, B., Storti, P., Toscani, D., Vicario, E. and Malavasi, F. (2019) Novel targets for the treatment of relapsing multiple myeloma. Expert Rev. Hematol. 12, 481-496. https://doi.org/10.1080/17474086.2019.1624158
  16. Gong, P., Wang, Y. and Jing, Y. (2019) Apoptosis induction byHistone deacetylase inhibitors in cancer cells: role of Ku70. Int. J. Mol. Sci. 20, 1601.
  17. Guo, G., Kang, Q., Chen, Q., Chen, Z., Wang, J., Tan, L. and Chen, J. L. (2014) High expression of long non-coding RNA H19 is required for efficient tumorigenesis induced by Bcr-Abl oncogene. FEBS Lett. 588, 1780-1786. https://doi.org/10.1016/j.febslet.2014.03.038
  18. He, L., Torres-Lockhart, K., Forster, N., Ramakrishnan, S., Greninger, P., Garnett, M. J., McDermott, U., Rothenberg, S. M., Benes, C. H. and Ellisen, L. W. (2013) Mcl-1 and FBW7 control a dominant survival pathway underlying HDAC and Bcl-2 inhibitor synergy in squamous cell carcinoma. Cancer Discov. 3, 324-337. https://doi.org/10.1158/2159-8290.CD-12-0417
  19. Howes, S. C., Alushin, G. M., Shida, T., Nachury, M. V. and Nogales, E. (2014) Effects of tubulin acetylation and tubulin acetyltransferase binding on microtubule structure. Mol. Biol. Cell 25, 257-266. https://doi.org/10.1091/mbc.e13-07-0387
  20. Hua, H., Kong, Q., Zhang, H., Wang, J., Luo, T. and Jiang, Y. (2019) Targeting mTOR for cancer therapy. J. Hematol. Oncol. 12, 71.
  21. Imai, Y., Hirano, M., Kobayashi, M., Futami, M. and Tojo, A. (2019) HDAC inhibitors exert anti-myeloma effects through multiple modes of action. Cancers (Basel) 11, 475.
  22. Janke, C. and Bulinski, J. C. (2011) Post-translational regulation of the microtubule cytoskeleton: mechanisms and functions. Nat. Rev. Mol. Cell Biol. 12, 773-786. https://doi.org/10.1038/nrm3227
  23. Jiang, X., Tan, J., Li, J., Kivimae, S., Yang, X., Zhuang, L., Lee, P. L., Chan, M. T., Stanton, L. W., Liu, E. T., Cheyette, B. N. and Yu, Q. (2008) DACT3 is an epigenetic regulator of Wnt/beta-catenin signaling in colorectal cancer and is a therapeutic target of histone modifications. Cancer Cell 13, 529-541. https://doi.org/10.1016/j.ccr.2008.04.019
  24. Kao, J. T., Chuah, S. K., Huang, C. C., Chen, C. L., Wang, C. C., Hung, C. H., Chen, C. H., Wang, J. H., Lu, S. N., Lee, C. M., Changchien, C. S. and Hu, T. H. (2007) P21/WAF1 is an independent survival prognostic factor for patients with hepatocellular carcinoma after resection. Liver Int. 27, 772-781. https://doi.org/10.1111/j.1478-3231.2007.01499.x
  25. Kelly, P. N., Grabow, S., Delbridge, A. R., Strasser, A. and Adams, J. M. (2011) Endogenous Bcl-xL is essential for Myc-driven lymphomagenesis in mice. Blood 118, 6380-6386. https://doi.org/10.1182/blood-2011-07-367672
  26. Kim, H. J. and Bae, S. C. (2011) Histone deacetylase inhibitors: molecular mechanisms of action and clinical trials as anti-cancer drugs. Am. J. Transl. Res. 3, 166-179.
  27. Kim, S. J., Kim, U. J., Yoo, H. Y., Choi, Y. J. and Kang, K. W. (2020) Anti-cancer effects of CKD-581, a potent histone deacetylase inhibitor against diffuse large B-cell lymphoma. Int. J. Mol. Sci. 21, 4377.
  28. Kim, Y., Reifenberger, G., Lu, D., Endo, T., Carson, D. A., Gast, S. M., Meschenmoser, K., Nowak, M. and Schmidt-Wolf, I. G. (2011) Influencing the Wnt signaling pathway in multiple myeloma. Anticancer Res. 31, 725-730.
  29. Kwak, B., Kim, D. U., Kim, T. O., Kim, H. S. and Kim, S. W. (2018) MicroRNA-552 links Wnt signaling to p53 tumor suppressor in colorectal cancer. Int. J. Oncol. 53, 1800-1808.
  30. Leal, P., Garcia, P., Sandoval, A., Buchegger, K., Weber, H., Tapia, O. and Roa, J. C. (2013) AKT/mTOR substrate P70S6K is frequently phosphorylated in gallbladder cancer tissue and cell lines. Onco Targets Ther. 6, 1373-1384.
  31. Li, Y. and Seto, E. (2016) HDACs and HDAC inhibitors in cancer development and therapy. Cold Spring Harb. Perspect. Med. 6, a026831.
  32. Mandal, A. and Waxman, J. (2014) Retinoic acid negatively regulates dact3b expression in the hindbrain of zebrafish embryos. Gene Expr. Patterns 16, 122-129. https://doi.org/10.1016/j.gep.2014.09.003
  33. Min, C. K., Kim, K., Kim, S. J., Yoon, D. H., Park, S.-S. and Han, S. (2019) A phase 1, open-label, multi-center study of alteminostat (CKD-581) in combination with lenalidomide and dexamethasone in patients with previously treated multiple myeloma (MM). Blood 134, 1847.
  34. Mithraprabhu, S., Kalff, A., Chow, A., Khong, T. and Spencer, A. (2014) Dysregulated Class I histone deacetylases are indicators of poor prognosis in multiple myeloma. Epigenetics 9, 1511-1520. https://doi.org/10.4161/15592294.2014.983367
  35. Mithraprabhu, S., Khong, T., Jones, S. S. and Spencer, A. (2013) Histone deacetylase (HDAC) inhibitors as single agents induce multiple myeloma cell death principally through the inhibition of class I HDAC. Br. J. Haematol. 162, 559-562. https://doi.org/10.1111/bjh.12388
  36. Morin, P. J., Sparks, A. B., Korinek, V., Barker, N., Clevers, H., Vogelstein, B. and Kinzler, K. W. (1997) Activation of beta-catenin-Tcf signaling in colon cancer by mutations in beta-catenin or APC. Science 275, 1787-1790. https://doi.org/10.1126/science.275.5307.1787
  37. Munemitsu, S., Albert, I., Souza, B., Rubinfeld, B. and Polakis, P. (1995) Regulation of intracellular beta-catenin levels by the adenomatous polyposis coli (APC) tumor-suppressor protein. Proc. Natl. Acad. Sci. U.S.A. 92, 3046-3050. https://doi.org/10.1073/pnas.92.7.3046
  38. Musgrove, E. A., Caldon, C. E., Barraclough, J., Stone, A. and Sutherland, R. L. (2011) Cyclin D as a therapeutic target in cancer. Nat. Rev. Cancer 11, 558-572. https://doi.org/10.1038/nrc3090
  39. Nebbioso, A., Carafa, V., Conte, M., Tambaro, F. P., Abbondanza, C., Martens, J., Nees, M., Benedetti, R., Pallavicini, I., Minucci, S., Garcia-Manero, G., Iovino, F., Lania, G., Ingenito, C., Belsito Petrizzi, V., Stunnenberg, H. G. and Altucci, L. (2017) c-Myc modulation and acetylation is a key HDAC inhibitor target in cancer. Clin. Cancer Res. 23, 2542-2555. https://doi.org/10.1158/1078-0432.CCR-15-2388
  40. Qie, S. and Diehl, J. A. (2016) Cyclin D1, cancer progression, and opportunities in cancer treatment. J. Mol. Med. 94, 1313-1326. https://doi.org/10.1007/s00109-016-1475-3
  41. Rajkumar, S. V., Dimopoulos, M. A., Palumbo, A., Blade, J., Merlini, G., Mateos, M. V., Kumar, S., Hillengass, J., Kastritis, E., Richardson, P., Landgren, O., Paiva, B., Dispenzieri, A., Weiss, B., LeLeu, X., Zweegman, S., Lonial, S., Rosinol, L., Zamagni, E., Jagannath, S., Sezer, O., Kristinsson, S. Y., Caers, J., Usmani, S. Z., Lahuerta, J. J., Johnsen, H. E., Beksac, M., Cavo, M., Goldschmidt, H., Terpos, E., Kyle, R. A., Anderson, K. C., Durie, B. G. and Miguel, J. F. (2014) International Myeloma Working Group updated criteria for the diagnosis of multiple myeloma. Lancet Oncol. 15, e538-e548.
  42. Ramakrishnan, V. G., Miller, K. C., Macon, E. P., Kimlinger, T. K., Haug, J., Kumar, S., Gonsalves, W. I., Rajkumar, S. V. and Kumar, S. K. (2019) Histone deacetylase inhibition in combination with MEK or BCL-2 inhibition in multiple myeloma. Haematologica 104, 2061-2074. https://doi.org/10.3324/haematol.2018.211110
  43. Ren, Y., Chen, Y., Liang, X., Lu, Y., Pan, W. and Yang, M. (2017) MiRNA-638 promotes autophagy and malignant phenotypes of cancer cells via directly suppressing DACT3. Cancer Lett. 390, 126-136. https://doi.org/10.1016/j.canlet.2017.01.009
  44. Rennoll, S. and Yochum, G. (2015) Regulation of MYC gene expression by aberrant Wnt/beta-catenin signaling in colorectal cancer. World J. Biol. Chem. 6, 290-300. https://doi.org/10.4331/wjbc.v6.i4.290
  45. Riascos-Bernal, D. F., Chinnasamy, P., Cao, L. L., Dunaway, C. M., Valenta, T., Basler, K. and Sibinga, N. E. (2016) beta-Catenin C-terminal signals suppress p53 and are essential for artery formation. Nat. Commun. 7, 12389.
  46. Sanchez, E., Shen, J., Steinberg, J., Li, M., Wang, C., Bonavida, B., Chen, H., Li, Z.-W. and Berenson, J. R. (2011) The histone deacetylase inhibitor LBH589 enhances the anti-myeloma effects of chemotherapy in vitro and in vivo. Leuk. Res. 35, 373-379. https://doi.org/10.1016/j.leukres.2010.06.026
  47. Saukkonen, K., Hagstrom, J., Mustonen, H., Juuti, A., Nordling, S., Kallio, P., Alitalo, K., Seppanen, H. and Haglund, C. (2016) PROX1 and beta-catenin are prognostic markers in pancreatic ductal adenocarcinoma. BMC Cancer 16, 472.
  48. Shao, N., Zou, J., Li, J., Chen, F., Dai, J., Qu, X., Sun, X., Ma, D. and Ji, C. (2012) Hyper-activation of WNT/beta-catenin signaling pathway mediates anti-tumor effects of histone deacetylase inhibitors in acute T lymphoblastic leukemia. Leuk. Lymphoma 53, 1769-1778. https://doi.org/10.3109/10428194.2012.663085
  49. Shieh, J. M., Tang, Y. A., Hu, F. H., Huang, W. J., Wang, Y. J., Jen, J., Liao, S. Y., Lu, Y. H., Yeh, Y. L., Wang, T. W., Lin, P. and Wang, Y. C. (2017) A histone deacetylase inhibitor enhances expression of genes inhibiting Wnt pathway and augments activity of DNA demethylation reagent against nonsmall-cell lung cancer. Int. J. Cancer 140, 2375-2386. https://doi.org/10.1002/ijc.30664
  50. Singh, A. K., Bishayee, A. and Pandey, A. K. (2018) Targeting histone deacetylases with natural and synthetic agents: an emerging anticancer strategy. Nutrients 10, 731.
  51. Sivaraj, D., Green, M. M. and Gasparetto, C. (2017) Panobinostat for the management of multiple myeloma. Future Oncol. 13, 477-488. https://doi.org/10.2217/fon-2016-0329
  52. Spaan, I., Raymakers, R. A., van de Stolpe, A. and Peperzak, V. (2018) Wnt signaling in multiple myeloma: a central player in disease with therapeutic potential. J. Hematol. Oncol. 11, 67.
  53. Su, N., Wang, P. and Li, Y. (2016) Role of Wnt/beta-catenin pathway in inducing autophagy and apoptosis in multiple myeloma cells. Oncol. Lett. 12, 4623-4629. https://doi.org/10.3892/ol.2016.5289
  54. VanArsdale, T., Boshoff, C., Arndt, K. T. and Abraham, R. T. (2015) Molecular pathways: targeting the cyclin D-CDK4/6 axis for cancer treatment. Clin. Cancer Res. 21, 2905-2910. https://doi.org/10.1158/1078-0432.CCR-14-0816
  55. Vousden, K. H. (2000) p53: death star. Cell 103, 691-694. https://doi.org/10.1016/S0092-8674(00)00171-9
  56. Wang, Y. X., Zhang, J. H. and Gu, Z. W. (2009) Wnt/beta-catenin signal pathway and malignant hematological disease -- review. Zhongguo Shi Yan Xue Ye Xue Za Zhi 17, 234-237.
  57. Wattanathamsan, O., Thararattanobon, R., Rodsiri, R., Chanvorachote, P., Vinayanuwattikun, C. and Pongrakhananon, V. (2021) Tubulin acetylation enhances lung cancer resistance to paclitaxel-induced cell death through Mcl-1 stabilization. Cell Death Discov. 7, 67.
  58. Weichert, W., Denkert, C., Noske, A., Darb-Esfahani, S., Dietel, M., Kalloger, S. E., Huntsman, D. G. and Kobel, M. (2008a) Expression of class I histone deacetylases indicates poor prognosis in endometrioid subtypes of ovarian and endometrial carcinomas. Neoplasia 10, 1021-1027. https://doi.org/10.1593/neo.08474
  59. Weichert, W., Roske, A., Gekeler, V., Beckers, T., Ebert, M. P., Pross, M., Dietel, M., Denkert, C. and Rocken, C. (2008b) Association of patterns of class I histone deacetylase expression with patient prognosis in gastric cancer: a retrospective analysis. Lancet Oncol. 9, 139-148. https://doi.org/10.1016/S1470-2045(08)70004-4
  60. Xi, S., Yang, M., Tao, Y., Xu, H., Shan, J., Inchauste, S., Zhang, M., Mercedes, L., Hong, J. A., Rao, M. and Schrump, D. S. (2010) Cigarette smoke induces C/EBP-beta-mediated activation of miR-31 in normal human respiratory epithelia and lung cancer cells. PLoS ONE 5, e13764.
  61. Xi, Y. and Chen, Y. (2014) Wnt signaling pathway: implications for therapy in lung cancer and bone metastasis. Cancer Lett. 353, 8-16. https://doi.org/10.1016/j.canlet.2014.07.010
  62. Xiang, W., Yang, C. Y. and Bai, L. (2018) MCL-1 inhibition in cancer treatment. Onco Targets Ther. 11, 7301-7314. https://doi.org/10.2147/OTT.S146228
  63. Yang, T., Choi, Y., Joh, J. W., Cho, S. K., Kim, D. S. and Park, S. G. (2019) Phosphorylation of p53 serine 15 is a predictor of survival for patients with hepatocellular carcinoma. Can. J. Gastroenterol. Hepatol. 2019, 9015453.
  64. Yuan, S., Tao, F., Zhang, X., Zhang, Y., Sun, X. and Wu, D. (2020) Role of Wnt/beta-catenin signaling in the chemoresistance modulation of colorectal cancer. Biomed. Res. Int. 2020, 9390878.
  65. Yuan, X. G., Huang, Y. R., Yu, T., Jiang, H. W., Xu, Y. and Zhao, X. Y. (2019) Chidamide, a histone deacetylase inhibitor, induces growth arrest and apoptosis in multiple myeloma cells in a caspase-dependent manner. Oncol. Lett. 18, 411-419.
  66. Zhang, P., Guo, Z., Wu, Y., Hu, R., Du, J., He, X., Jiao, X. and Zhu, X. (2015) Histone deacetylase inhibitors inhibit the proliferation of gallbladder carcinoma cells by suppressing AKT/mTOR signaling. PLoS ONE 10, e0136193.
  67. Zhao, H., Yang, L., Han, Y., Li, H., Ling, Z., Wang, Y., Wang, E. and Wu, G. (2017) Dact3 inhibits the malignant phenotype of non-small cell lung cancer through downregulation of c-Myb. Int. J. Clin. Exp. Pathol. 10, 11580-11587.