• Title/Summary/Keyword: CKD-581

Search Result 2, Processing Time 0.016 seconds

CKD-581 Downregulates Wnt/β-Catenin Pathway by DACT3 Induction in Hematologic Malignancy

  • Kim, Soo Jin;Kim, Suntae;Choi, Yong June;Kim, U Ji;Kang, Keon Wook
    • Biomolecules & Therapeutics
    • /
    • v.30 no.5
    • /
    • pp.435-446
    • /
    • 2022
  • The present study evaluated the anti-cancer activity of histone deacetylase (HDAC)-inhibiting CKD-581 in multiple myeloma (MM) and its pharmacological mechanisms. CKD-581 potently inhibited a broad spectrum of HDAC isozymes. It concentration-dependently inhibited proliferation of hematologic cancer cells including MM (MM.1S and RPMI8226) and T cell lymphoma (HH and MJ). It increased the expression of the dishevelled binding antagonist of β-catenin 3 (DACT3) in T cell lymphoma and MM cells, and decreased the expression of c-Myc and β-catenin in MM cells. Additionally, it enhanced phosphorylated p53, p21, cleaved caspase-3 and the subG1 population, and reversely, downregulated cyclin D1, CDK4 and the anti-apoptotic BCL-2 family. Finally, administration of CKD-581 exerted a significant anti-cancer activity in MM.1S-implanted xenografts. Overall, CKD-581 shows anticancer activity via inhibition of the Wnt/β-catenin signaling pathway in hematologic malignancies. This finding is evidence of the therapeutic potential and rationale of CKD-581 for treatment of MM.

Antitumor Activity of 7-[2-(N-Isopropylamino)ethyl]-(20s)-camptothecin, CKD602, as a Potent DNA Topoisomerase I Inhibitor

  • Lee, Jun-Hee;Lee, Ju-Mong;Kim, Joon-Kyum;Ahn, Soon-Kil;Lee, Sang-Joon;Kim, Mie-Young;Jew, Sang-Sup;Park, Jae-Gab;Hong, Chung-Il
    • Archives of Pharmacal Research
    • /
    • v.21 no.5
    • /
    • pp.581-590
    • /
    • 1998
  • We developed a novel water-soluble camptothecin analobue, CKD602, and evaluated the inhibition of topoisomerase I and the antitumor activities against mammalian tumor cells and human tumor xenografts. CKD602 was a nanomolar inhibitor of the topoisomerase I enzyme in the cleavable complex assay. CKD602 was found to be 3 times and slightly more potent than topotecan and camptothecin as inhibitors of topoisomerase, respecitively. In tumor cell cytotoxicity, CKD602 was more potent than topotecan in 14 out of 26 human cancer cell lines tested, while it was comparable to camptothecin. CKD602 was tested for the in vivo antitumor activity against the human tumor xenograft models. CKD602 was able to imduce regression of established HT-29, WIDR and CX-1 colon tumors, LX-1 lung tumor, MX-1 breast tumor and SKOV-3 ovarian tumor as much as 80, 94, 76, 67, 87% and 88%, respectively, with comparable body weight changes to those of topotecan. Also the therapeutic margin (R/Emax: maximum tolerance dose/$ED-{58}$) of CKD602 was significantly higher than that of topotecan by 4 times. Efficacy was determined at the maximal tolerated dose levels using schedule dependent i.p. administration in mice bearing L1210 leukemia. On a Q4dx4 (every 4 day for 4 doses) schedule, the maximum tolerated dose (MTD) was 25 mg/kg per administration, which caused great weight loss and lethality in <5% tumor bearing mouse. this schedule brought significant increase in life span (ILS), 212%, with 33% of long-term survivals. The ex vivo antitumor activity of CKD602 was compared with that of topotecan and the mean antitumor index (ATI) values recorded for CKD602 were significantly higher than that noted for topotecan. From these results, CKD602 warrants further clinical investigations as a potent inhibitor of topoisomerase I.

  • PDF