DOI QR코드

DOI QR Code

음이온교환막용 헤테로고리형 4차 암모늄 작용기를 갖는 폴리(아릴렌 이써)의 제조 및 특성 분석

Preparation and Characterization of Poly(Arylene Ether) Having Heterocyclic Quaternary Ammonium Functional Groups for Anion Exchange Membranes

  • 이상혁 (전북대학교 대학원 에너지저장.변환공학과(BK21 FOUR), 수소.연료전지연구센터) ;
  • 유동진 (전북대학교 대학원 에너지저장.변환공학과(BK21 FOUR), 수소.연료전지연구센터)
  • LEE, SANG HYEOK (Department of Energy Storage Conversion Engineering (BK21 FOUR) of Graduate School, Hydrogen and Fuel Cell Research Center, Jeonbuk National University) ;
  • YOO, DONG JIN (Department of Energy Storage Conversion Engineering (BK21 FOUR) of Graduate School, Hydrogen and Fuel Cell Research Center, Jeonbuk National University)
  • 투고 : 2022.08.10
  • 심사 : 2022.08.22
  • 발행 : 2022.08.30

초록

In this study, anion exchange membranes were prepared by synthesizing the main chain into a poly(arylene ether) (PAE) structure, and the structures capable of improving the physical and chemical stability of the membrane by introducing a heterocyclic quaternary ammonium functional groups were studied. The chemical structure and thermal properties of the prepared polymer were confirmed by 1H-NMR, FT-IR, TGA, and DSC, and surface analysis was performed through AFM measurement. Additionally, dimensional stability and chemical properties was studied by measuring water uptake and swelling ratio, IEC and ionic conductivity. At 90℃, the quaternized poly(arylene ether) (QPAE)/1-methylpiperidine (MP) membrane exhibited the highest ionic conductivity of 27.2 mS cm-1, while the QPAE/1-methylimidazole (MI) membrane and QPAE/1-methylmorpholine (MM) membrane exhibited values of 14.5 mS cm-1 and 11.5 mS cm-1, respectively. In addition, the prepared anion exchange membrane exhibited high chemical stability in alkaline solution.

키워드

과제정보

이 성과는 2020년도 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구입니다(No. 2020R1A2B5B01001458).

참고문헌

  1. K. F. L. Hagesteijn, S. Jiang, and B. P. Ladewig, "A review of the synthesis and characterization of anion exchange membranes", J. Mater. Sci., Vol. 53, 2018, pp. 11131-11150, doi: https://doi.org/10.1007/s10853-018-2409-y.
  2. N. Chen and Y. M. Lee, "Anion exchange polyelectrolytes for membranes and ionomers", Prog. Polym. Sci., Vol. 113, 2021, pp. 101345, doi: https://doi.org/10.1016/j.progpolymsci.2020.101345.
  3. M. Vinothkannan, A. R. Kim, S. Ramakrishnan, Y. T. Yu, and D. J. Yoo, "Advanced Nafion nanocomposite membrane embedded with unzipped and functionalized graphite nanofibers for high-temperature hydrogen-air fuel cell system: the impact of filler on power density, chemical durability and hydrogen permeability of membrane", Compos. Part B Eng., Vol. 215, 2021, pp. 108828, doi: https://doi.org/10.1016/j.compositesb.2021.108828.
  4. M. A. Abdelkareem, K. Elsaid, T. Wilberforce, M. Kamil, E. T. Sayed, and A. Olabi, "Environmental aspects of fuel cells: a review", Sci. Total Environ., Vol. 752, 2021, pp. 141803, doi: https://doi.org/10.1016/j.scitotenv.2020.141803.
  5. A. R. Kim, M. Vinothkannan, and D. J. Yoo, "Artificially designed, low humidifying organic-inorganic(SFBC-50/FSiO2) composite membrane for electrolyte applications of fuel cells", Compos. Part B Eng., Vol. 130, 2017, pp. 103-113, doi: https://doi.org/10.1016/j.compositesb.2017.07.042.
  6. D. J. Yoo, S. H. Hyun, A. R. Kim, G. G. Kumar, and K. S. Nahm, "Novel sulfonated poly(arylene biphenylsulfone ether) copolymers containing bisphenylsulfonyl biphenyl moiety: structural, thermal, electrochemical and morphological characteristics", Polym. Int., Vol. 60, No. 1, 2011, pp. 85-92, doi: https://doi.org/10.1002/pi.2914.
  7. G. Merle, M. Wessling, and K. Nijmeijer, "Anion exchange membranes for alkaline fuel cells: a review", J. Membr. Sci., Vol. 377, No. 1-2, 2011, pp. 1-35, doi: https://doi.org/10.1016/j.memsci.2011.04.043.
  8. K Tammeveski and J. H. Zagal, "Electrocatalytic oxygen reduction on transition metal macrocyclic complexes for anion exchange membrane fuel cell application", Current Opinion in Electrochemistry, Vol. 9, 2018, pp. 207-213, doi: https://doi.org/10.1016/j.coelec.2018.04.001.
  9. M. Pan, C. Pan, C. Li, and J. Zhao, "A review of membranes in proton exchange membrane fuel cells: transport phenomena, performance and durability", Renew. Sust. Energ. Rev., Vol. 141, 2021, pp. 110771, doi: https://doi.org/10.1016/j.rser.2021.110771.
  10. L. Fan, Z. Tu, and S. H. Chan, "Recent development of hydrogen and fuel cell technologies: a review", Energy Rep., Vol. 7, 2021, pp. 8421-8446, doi: https://doi.org/10.1016/j.egyr.2021.08.003.
  11. A. M. A. Mahmoud and K. Miyatake, "Highly conductive and alkaline stable partially fluorinated anion exchange membranes for alkaline fuel cells: effect of ammonium head groups", J. Membr. Sci., Vol. 643, 2022, pp. 120072, doi: https://doi.org/10.1016/j.memsci.2021.120072.
  12. E. Gulzow and M. Schulze, "Long-term operation of AFC electrodes with CO2 containing gases", J. Power Sources, Vol. 127, No. 1-2, 2004, pp. 243-251, doi: https://doi.org/10.1016/j.jpowsour.2003.09.020.
  13. P. Gouerec, L, Poletto, J, Denizot, E. Sanchez-Cortezon, and J. H. Miners, "The evolution of the performance of alkaline fuel cells with circulating electrolyte", J. Power Sources, Vol. 129, No. 2, 2004, pp. 193-204, doi: https://doi.org/10.1016/j.jpowsour.2003.11.032.
  14. E. Gulzow, "Alkaline fuel cells: a critical view", J. Power Sources, Vol. 61, No. 1-2, 1996, pp. 99-104, doi: https://doi.org/10.1016/S0378-7753(96)02344-0.
  15. E. Agel, J. Bouet, and J. F. Fauvarque, "Characterization and use of anionic membranes for alkaline fuel cells", J. Power Sources, Vol. 101, No. 2, 2001, pp. 267-274, doi: https://doi.org/10.1016/S0378-7753(01)00759-5.
  16. M. Liu, X. Hu, B. Hu, L. Liu, and N. Li, "Soluble poly(aryl piperidinium) with extended aromatic segments as anion exchange membranes for alkaline fuel cells and water electrolysis", J. Membr. Sci., Vol. 642, 2022, pp. 119966, doi: https://doi.org/10.1016/j.memsci.2021.119966.
  17. J. Y. Chu, K. H. Lee, A. R. Kim, and D. J. Yoo, "Improved electrochemical performance of composite anion exchange membranes for fuel cells through cross linking of the polymer chain with functionalized graphene oxide", J. Membr. Sci., Vol. 611, 2020, pp. 118385, doi: https://doi.org/10.1016/j.memsci.2020.118385.
  18. K. H. Lee, J. Y. Chu, A. R. Kim, and D. J. Yoo, "Fabrication of high-alkaline stable quaternized poly(arylene ether ketone)/graphene oxide derivative including zwitterion for alkaline fuel cells", ACS Sustain. Chem. Eng., Vol. 9, No. 26, 2021, pp. 8824-8834, doi: https://doi.org/10.1021/acssuschemeng.1c01978.
  19. Q. Chen, J. Luo, J. Liao, C. Zhu, J. Li, J. Xu, Y. Xu, H. Ruan, and J. Shen, "Tuning the length of aliphatic chain segments in aromatic poly(arylene ether sulfone) to tailor the micro-structure of anion-exchange membrane for improved proton blocking performance", J. Membr. Sci., Vol. 641, 2022, pp. 119860, doi: https://doi.org/10.1016/j.memsci.2021.119860.
  20. K. H. Lee, J. Y. Chu, A. R. Kim, and D. J. Yoo, "Effect of functionalized SiO2 toward proton conductivity of composite membranes for PEMFC application", Int. J. Energy Res., Vol. 43, No. 10, 2019, pp. 5333-5345, doi: https://doi.org/10.1002/er.4610.
  21. J. Miyake, K. Fukasawa, M. Watanabe, and K. Miyatake, "Effect of ammonium groups on the properties and alkaline stability of poly(arylene ether)-based anion exchange membranes", J. Polym. Sci. A. Polym. Chem., Vol. 52, No. 3, 2014, pp. 383-389, doi: https://doi.org/10.1002/pola.27011.
  22. J. Liu, X. Yan, L. Gao, L. Hu, X. Wu, Y. Dai, X. Ruan, and G. He, "Long-branched and densely functionalized anion exchange membranes for fuel cells", J. Membr. Sci., Vol. 581, 2019, pp. 82-92, doi: https://doi.org/10.1016/j.memsci.2019.03.046.
  23. Z. Wang, S. F. Zhou, Y. Z. Zhuo, A. N. Lai, Y. Z. Lu, and X. B. Wu, "Adamantane-based block poly(arylene ether sulfone)s as anion exchange membranes", Polymer, Vol. 255, 2022, pp. 125155, doi: https://doi.org/10.1016/j.polymer.2022.125155.
  24. H. Ranganathan, M. Vinothkannan, A. R. Kim, V. Subramanian, M. S. Oh, and D. J. Yoo, "Simultaneous im- provement of power density and durability of sulfonated poly(ether ether ketone) membrane by embedding CeO2-ATiO2: a comprehensive study in low humidity proton exchange membrane fuel cells", Int. J. Energy Res., Vol. 46, No. 7, 2022, pp. 9041-9057, doi: https://doi.org/10.1002/er.7781.
  25. S. D. Sajjad, Y. Hong, and F. Liu, "Synthesis of guanidinium-based anion exchange membranes and their stability assessment", Polym. Adv. Technol., Vol. 25, No. 1, 2014, pp. 108-116, doi: https://doi.org/10.1002/pat.3211.
  26. L. Liu, Q. Li, J. Dai, H. Wang, B. Jin, and R. Bai, "A facile strategy for the synthesis of guanidinium-functionalized polymer as alkaline anion exchange membrane with improved alkaline stability", J. Membr. Sci., Vol. 453, 2014, pp. 52-60, doi: https://doi.org/10.1016/j.memsci.2013.10.054.
  27. B. N. Lee, A. Kodir, H. Lee, D. Shin, and B. Bae, "Preparation and characterization of the polymeric antioxidant for improving the chemical durability of polymer electrolyte membranes", Trans Korean Hydrogen New Energy Soc, Vol. 32, No. 5, 2021, pp. 308-314, doi: https://doi.org/10.7316/KHNES.2021.32.5.308.
  28. K. H. Lee, J. Y. Chu, A. R. Kim, and D. J. Yoo, "Simultaneous improvement of anion conductivity and cell durability through the formation of dense ion clusters of F-doped graphitic carbon nitride/quaternized poly(phenylene oxide) composite membrane", J. Membr. Sci., Vol. 650, 2022, pp. 120384, doi: https://doi.org/10.1016/j.memsci.2022.120384.
  29. X. Mao, Z. Li, G. He, Z. Li, J. Zhao, Y. Zhang, and Z. Jiang, "Enhancing hydroxide conductivity of anion exchange membrane via incorporating densely imidazolium functionalized graphene oxide", J. Solid. State. Chem., Vol. 333, 2019, pp. 83-92, doi: https://doi.org/10.1016/j.ssi.2019.01.023.
  30. L. Liu, C. Tong, Y. He, Y. Zhao, and C. Lu, "Enhanced properties of quaternized graphenes reinforced polysulfone based composite anion exchange membranes for alkaline fuel cell", J. Membr. Sci., Vol. 487, 2015, pp. 99-108, doi: https://doi.org/10.1016/j.memsci.2015.03.077.
  31. J. Liu, R. Qu, P. Peng, W. Liu, D. Chen, H. Zhang, and X. Liu, "Covalently functionalized graphene oxide and quaternized polysulfone nanocomposite membranes for fuel cells", RSC Adv., Vol. 6, No. 75, 2016, pp. 71305-71310, doi: https://doi.org/10.1039/C6RA12822J.
  32. Z. Luo, Y. Gong, X. Liao, Y. Pan, and H. Zhang, "Nanocomposite membranes modified by graphene-based materials for anion exchange membrane fuel cells", RSC Adv., Vol. 6, No. 17, 2016, pp. 13618-13625, doi: https://doi.org/10.1039/C5RA21104B.
  33. Q. Wang, L. Huang, J. Zheng, Q. Zhang, G. Qin, S. Li, and S. Zhang, "Design, synthesis and characterization of anion exchange membranes containing guanidinium salts with ultrahigh dimensional stability", J. Membr. Sci., Vol. 643, 2022, pp. 120008, doi: https://doi.org/10.1016/j.memsci.2021.120008.
  34. L. Li, J. Wang, M. Hussain, L. Ma, N. A. Qaisrani, S. Ma, L. Bai, X. Yan, X. Deng, G. He, and F. Zhang, "Side-chain manipulation of poly (phenylene oxide) based anion exchange membrane: alkoxyl extender integrated with flexible spacer", J. Membr. Sci., Vol. 624, 2021, pp. 119088, doi: https://doi.org/10.1016/j.memsci.2021.119088.
  35. H. M. Kim, C. Hu, H. H. Wang, J. H. Park, N. Chen, and Y. M. Lee, "Impact of side-chains in poly(dibenzyl-co-terphenyl piperidinium) copolymers for anion exchange membrane fuel cells", J. Membr. Sci., Vol. 644, 2022, pp. 120109, doi: https://doi.org/10.1016/j.memsci.2021.120109.
  36. Y. Shen, L. Maurizi, G. Magnacca, V. Boffa, and Y. Yue, "Tuning porosity of reduced graphene oxide membrane materials by alkali activation", Nanomaterials, Vol. 10, No. 11, 2020, pp. 2093, doi: https://doi.org/10.3390/nano10112093.
  37. Z. Xue, Y. Tang, X. Duan, Y. Ye, X. Xie, and X. Zhou, "Ionic polymer-metal composite actuators obtained from sulfonated poly(ether ether sulfone) ion-exchange membranes", Compos. Part A Appl. Sci. Manuf., Vol. 81, 2016, pp. 13-21, doi: https://doi.org/10.1016/j.compositesa.2015.11.007.
  38. S. H. Kim and D. J. Yoo, "Simultaneous improvement of dimensional stability and ionic conductivity of QPAE/TiO2-x composite membranes according to TiO2 content control for anion exchange membrane fuel cells", Trans Korean Hydrogen New Energy Soc, Vol. 33, No. 1, 2022, pp. 19-27, doi: https://doi.org/10.7316/KHNES.2022.33.1.19.
  39. S. Du, S. Li, N. Xie, Y. Xu, Q. Weng, X. Ning, P. Chen, X. Chen, and Z. An, "Development of rigid side-chain poly(ether sulfone)s based anion exchange membrane with multiple annular quaternary ammonium ion groups for fuel cells", Polymer, Vol. 251, 2022, pp. 124919, doi: https://doi.org/10.1016/j.polymer.2022.124919.
  40. F. Xu, Y. Su, and B. Lin, "Progress of alkaline anion exchange membranes for fuel cells: the effects of micro-phase separation", Front. Mater., Vol. 7, 2020, pp. 4, doi: https://doi.org/10.3389/fmats.2020.00004.
  41. J. Y. Chu, K. H. Lee, A. R. Kim, and D. J. Yoo, "Study on the chemical stabilities of poly(arylene ether) random copolymers for alkaline fuel cells: effect of main chain structures with different monomer units", ACS Sustain. Chem. Eng., Vol. 7, No. 24, 2019, pp. 20077-20087, doi: https://doi.org/10.1021/acssuschemeng.9b05934.
  42. S. Xu, W. Wu, R. Wan, W. Wei, Y. Li, J. Wang, X. Sun, and R. He, "Tailoring the molecular structure of pyridine-based polymers for enhancing performance of anion exchange electrolyte membranes", Renew. Energ., Vol. 194, 2022, pp. 366-377, doi: https://doi.org/10.1016/j.renene.2022.05.071.