DOI QR코드

DOI QR Code

Burnable poison optimized on a long-life, annular HTGR core

  • Sambuu, Odmaa (Department of Chemical and Biological Engineering, School of Engineering and Applied Sciences, National University of Mongolia) ;
  • Terbish, Jamiyansuren (Nuclear Research Center, National University of Mongolia)
  • 투고 : 2021.12.01
  • 심사 : 2022.03.18
  • 발행 : 2022.08.25

초록

The present work presents analysis results of the core design optimizations for an annular, prismatic High Temperature Gas-cooled Reactor (HTGR) with passive decay-heat removal features. Its thermal power is 100 MWt and the operating temperature is 850 ℃ (1123 K). The neutronic calculations are done for the core with heterogeneous distribution of fuel and burnable poison particles (BPPs) to flatten the reactivity swing and power peaking factor (PPF) during the reactor operation as well as for control rod (CR) insertion into the core to restrain a small excess reactivity less than 1$. The next step of the study is done for evaluation of core reactivity coefficient of temperature.

키워드

과제정보

This work was done within the framework of the "Study on very high temperature reactor" project supported by the Asia Research Center, National University of Mongolia, Mongolia and Korea Foundation for Advanced Studies, South Korea. We thank you for performing all calculations on the MINATO cluster server computers at the Nuclear Research Center, National University of Mongolia.

참고문헌

  1. David, A.; David, A. P.: Modular High Temperature Gas-Cooled Reactor Safety Basis and Approach. INL/EXT-13-30872.
  2. The Status of Graphite Development for Gas Cooled Reactors, IAEA-TECDOC-690, IAEA, VIENNA, 1993.
  3. Sh Saito, T. Tanaka, Y. Sudo, et al., Design and safety consideration in the high-temperature engeneering test reactor (HTTR), Energy 16 (1991) 2, https://doi.org/10.1016/0360-5442(91)90124-5, issues.
  4. Sh Saito, T. Tanaka, Y. Sudo, et al., Design of high temperature engineering test reactor (HTTR), Japan Atomic Energy Research Inst., Oarai, Ibaraki (Japan), in: JAERI-1332, 1994.
  5. S. Shiozawa, S. Fujikawa, T. Ioyku, et al., Overview of HTTR design features, Nucl. Eng. Des. 233 (1-3) (2004) 11-21, https://doi.org/10.1016/j.nucengdes.2004.07.16.
  6. S. Odmaa, T. Obara, Neutronic and thermo-hydraulic analyses of a small, long-life HTGR for passive decay heat removal, J. Nucl. Sci. Technol. 12 (2015) 1519-1529, https://doi.org/10.1080/18811248.2002.9715303.
  7. S. Odmaa, T. Jamyansuren, O. Toru, et al., Design parameters in an annular, prismatic HTGR for passive decay heat removal, Ann. Nucl. Energy 111 (2018) 441-448, https://doi.org/10.1016/j.anucene.2017.09.034.
  8. S. Odmaa, T. Jamiyansuren, et al., Comparative study on core designs of an annular, prismatic HTGR for passive decay heat removal, Nucl. Saf. Simul. 9 (2018) 194-199.
  9. K. Kunitomi, S. Nakagawa, M. Shinozaki, Passive heat removal by vessel cooling system of HTTR during no forced cooling accidents, Nucl. Eng. Des. 166 (1996) 179-190. https://doi.org/10.1016/0029-5493(96)01268-X
  10. T. Maruyama, et al., Change in physical properties of high density Isotropic graphites irradiated in the 'JOYO' fast reactor, J. Nucl. Mater 225 (1995) 267, https://doi.org/10.1016/0022-3115(95)00051-8.
  11. C.H. Wu, J.P. Bonal, B. Kryger, The effect of high-dose neutron irradiation on the properties of graphite and silicon carbide, J. Nucl. Mater. 208 (1994) 1-7, https://doi.org/10.1016/0022-3115(94)90191-0.
  12. S. Odmaa, T. Obara, Possible design in long-life small prismatic HTGR for passive decay heat removal, Nucl.Sci and Eng. (IF: 0.657) 177 (2014) 97-109, https://doi.org/10.13182/NSE13-22.
  13. COMSOL-5.2, Multiphysics modeling, finite element analysis and engineering simulation software, Available from: http://www.comsol.com//.
  14. Y. Nagaya, K. Okumura, T. Mori, et al., MVP/GMVP II: General Purpose Monte Carlo Code for Neutron and Photon Transport Calculations Based on Continuous Energy and Multigroup Methods. JAERI-1348, Japan Atomic Energy Research Institute, 2005, https://doi.org/10.11484/jaeri-1348.
  15. K. Okumura, Y. Nagaya, T. Mori, et al., MVP-BURN User's Manual, Tokai. Atomic Energy Agency, 2005.
  16. K. Shibata, T. Kawano, T. Nakagawa, et al., Japanese evaluated nuclear data library version 3 revision-3: JENDL-3.3, J. Nucl. Sci. Technol. 39 (11) (2002) 1125-1136, https://doi.org/10.1080/18811248.2002.9715303.
  17. K. Shibata, O. Iwamoto, T. Nakagawa, et al., JENDL-4.0 : a new library for nuclear science and engineering, J. Nucl. Sci. Technol. 48 (1) (2011) 1-30, https://doi.org/10.1080/18811248.2011.9711675.
  18. J.R. Lamarsh, Introduction to Nuclear Reactor Theory, Textbook, American Nuclear Society, 2002.