과제정보
This work is carried out under the financial support of a project funded by the National Natural Science Foundation of China (No.U2067208) and China Postdoctoral Science Foundation (No. BX2021236).
참고문헌
- C.C. Addison, The Chemistry of the Liquid Alkali Metals, Wiley, Chichester, 1984.
- J.L. Dye, The alkali metals: 200 years of surprises, Philos. Trans. A Math Phys. Eng. Sci. 373 (2015).
- K. Aoto, P. Dufour, Y. Hongyi, J.P. Glatz, Y. Kim, Y. Ashurko, R. Hill, N. Uto, A summary of sodium-cooled fast reactor development, Prog. Nucl. Energy 77 (2014) 247-265. https://doi.org/10.1016/j.pnucene.2014.05.008
- D.H. Yonghee Kim, A Compact Sodium-Cooled Traveling Wave Reactor, Transactions of the Korean Nuclear Society Autumn Meeting, Gyeongju, Korea, 2011.
- B.S. Triplett, E.P. Loewen, B.J. Dooies, PRISM: a competitive small modular sodium-cooled reactor, Nucl. Technol. 178 (2012) 186-200. https://doi.org/10.13182/NT178-186
- R.S. Reid, SAFE alkali metal heat pipe reliability, AIP Conf. Proc. (2003) 114-121.
- A. Faghri, Heat pipes: review, opportunities and challenges, Front. Heat Pipes (2014) 5.
- C.T.W.G. Kara, L. Walker, Alkali Metal Heat Pipes for Space Fission Power, Proceedings of Nuclear and Emerging Technologies for Space 2013, Albuquerque, NM, 2013.
- B.H. Yan, C. Wang, L.G. Li, The technology of micro heat pipe cooled reactor: a review, Ann. Nucl. Energy 135 (2020) 106948. https://doi.org/10.1016/j.anucene.2019.106948
- S. Wu, B. Cao, L. Xiao, Y. Li, Parametric study on flow and heat transfer characteristics of porous wick evaporator based on AMTEC, J. Mech. Sci. Technol. 26 (2012) 973-981. https://doi.org/10.1007/s12206-011-1250-x
- J. Pacio, A. Fritsch, C. Singer, R. Uhlig, Liquid metals as efficient coolants for high-intensity point-focus receivers: implications to the design and performance of next-generation CSP systems, Energy Proc. 49 (2014) 647-655. https://doi.org/10.1016/j.egypro.2014.03.070
- P. Yu, C. Huang, L. Liu, H. Guo, C. Liu, Heat and mass transfer characteristics of alkali metals in a combined wick of high-temperature heat pipe, Fluid Dynam. Mater. Process. 16 (2020) 267-280. https://doi.org/10.32604/fdmp.2020.06528
- S.V.G.A. Hao Wang, Characteristics OF an evaporating thin film IN a microchannel, in: 2006 ASME International Mechanical Engineering Congress and Exposition, 2006. Chicago, IIIinois, USA.
- J. Yu, H. Wang, A molecular dynamics investigation on evaporation of thin liquid films, Int. J. Heat Mass Tran. 55 (2012) 1218-1225. https://doi.org/10.1016/j.ijheatmasstransfer.2011.09.035
- F.C.P.S. Xiang Yin, Multi-scale Simulation on Dynamic Performance of an Integrated Pumping and Compression Evaporative Electronic Cooling System, Applied Thermal Engineering, 2018, pp. 318-328.
- Y. Luo, W. Liu, J. Gou, Multiscale simulation of a novel leaf-vein-inspired gradient porous wick structure, J. Bionic Eng. 16 (2019) 828-841. https://doi.org/10.1007/s42235-019-0100-x
- L. Zhang, J. Ouyang, S. Zheng, Multiscale analysis and numerical simulation for stability of the incompressible flow of a Maxwell fluid, Appl. Math. Model. 34 (2010) 763-775. https://doi.org/10.1016/j.apm.2009.06.020
- Y.B. Jo, S. Park, J. Park, E.S. Kim, Numerical simulation on LMR molten-core centralized sloshing benchmark experiment using multi-phase smoothed particle hydrodynamics, Nucl. Eng. Technol. 53 (2021) 752-762. https://doi.org/10.1016/j.net.2020.07.039
- O. Hogblom, Multiscale Simulation Methods for Thermoelectric Generators, Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Gothenburg, 2016.
- L. Yin, H. Liu, W. Liu, Capillary character and evaporation heat transfer in the wicks of high temperature liquid metal heat pipe, Appl. Therm. Eng. 175 (2020) 115284. https://doi.org/10.1016/j.applthermaleng.2020.115284
- K. Kihm, E. Kirchoff, M. Golden, J. Rosenfeld, S. Rawal, D. Pratt, A. Swanson, H. Bilheux, L. Walker, S. Voisin, D.S. Hussey, D.L. Jacobson, Neutron imaging of alkali metal heat pipes, Phys. Procedia 43 (2013) 323-330. https://doi.org/10.1016/j.phpro.2013.03.038
- H. Yi, Effect of Disjoining Pressure and Working Fluid on Multi-Scale Modeling for Evaporative Liquid Metal Capillary, 'Vol.' Master of Science Degree, University of Tennessee, 2013. Knoxville.
- Jr J.B. Tipton, Unique Characteristics of Liquid Metal Extended Meniscus Evaporation, 'Vol.' Doctor of Philosophy Degree, The University of Tennessee, 2009. Knoxville.
- R. Liu, Z. Liu, Study of boiling heat transfer on concave hemispherical nanostructure surface with MD simulation, Int. J. Heat Mass Tran. 143 (2019) 118534. https://doi.org/10.1016/j.ijheatmasstransfer.2019.118534
- D. Huang, X. Quan, P. Cheng, An investigation on vapor condensation on nanopillar array surfaces by molecular dynamics simulation, Int. Commun. Heat Mass Tran. 98 (2018) 232-238. https://doi.org/10.1016/j.icheatmasstransfer.2018.08.020
- H. Hu, Y. Sun, Effect of nanostructures on heat transfer coefficient of an evaporating meniscus, Int. J. Heat Mass Tran. 101 (2016) 878-885. https://doi.org/10.1016/j.ijheatmasstransfer.2016.05.092
- Z. Liang, T. Biben, P. Keblinski, Molecular simulation of steady-state evaporation and condensation: validity of the Schrage relationships, Int. J. Heat Mass Tran. 114 (2017) 105-114. https://doi.org/10.1016/j.ijheatmasstransfer.2017.06.025
- Y. Chen, Q. Cao, J. Li, B. Yu, W. Tao, Effects of simulation system on the phase transition behavior of liquid film: a molecular dynamics study, J. Mol. Liq. 311 (2020) 113306. https://doi.org/10.1016/j.molliq.2020.113306
- J. Gonzalez, J. Ortega, Z. Liang, Prediction of thermal conductance at liquid-gas interfaces using molecular dynamics simulations, Int. J. Heat Mass Tran. 126 (2018) 1183-1192. https://doi.org/10.1016/j.ijheatmasstransfer.2018.06.088
- Q. Cao, Y. Chen, W. Shao, X. Ma, C. Zheng, Z. Cui, Y. Liu, B. Yu, The effect of foreign particles on liquid film evaporation at the nanoscale: a molecular dynamics simulation, J. Mol. Liq. 319 (2020) 114218. https://doi.org/10.1016/j.molliq.2020.114218
- Y.W. Wu, C. Pan, Molecular dynamics simulation of thin film evaporation of Lennard-Jones liquid, Nanoscale Microscale Thermophys. Eng. 10 (2006) 157-170. https://doi.org/10.1080/10893950600643030
- K.Y.Y.K. Mitsuhiro Matsumoto, Microscopic features of evaporation and condensation at liquid surfaces: molecular dynamics simulation, Thermal Sci. Eng. 2 (1994) 66-69.
- H. Liu, X. Qin, S. Ahmad, Q. Tong, J. Zhao, Molecular dynamics study about the effects of random surface roughness on nanoscale boiling process, Int. J. Heat Mass Tran. 145 (2019) 118799. https://doi.org/10.1016/j.ijheatmasstransfer.2019.118799
- T. Ishiyama, T. Yano, S. Fujikawa, Molecular dynamics study of kinetic boundary condition at an interface between argon vapor and its condensed phase, Phys. Fluids 16 (1994) 2899-2906, 2004. https://doi.org/10.1063/1.1763936
- Y. Yuan, J. Zhang, D. Wang, Y. Xu, B. Bhandari, Molecular dynamics simulation on moisture diffusion process for drying of porous media in nanopores, Int. J. Heat Mass Tran. 121 (2018) 555-564. https://doi.org/10.1016/j.ijheatmasstransfer.2017.12.126
- T. Ishiyama, T. Yano, S. Fujikawa, Molecular dynamics study of kinetic boundary condition at an interface between a polyatomic vapor and its condensed phase, Phys. Fluids 16 (1994) 4713-4726, 2004. https://doi.org/10.1063/1.1811674
- S. Takahama, L.M. Russell, A molecular dynamics study of water mass accommodation on condensed phase water coated by fatty acid monolayers, J. Geophys. Res. Atmos. 116 (2011) (n/a-n/a).
- A.P. Bhansali, Y. Bayazitoglu, S. Maruyama, Molecular dynamics simulation of an evaporating sodium droplet, Int. J. Therm. Sci. 38 (1999) 66-74. https://doi.org/10.1016/S0035-3159(99)80017-8
- C. Wang, D. Zhang, S. Qiu, W. Tian, Y. Wu, G. Su, Study on the characteristics of the sodium heat pipe in passive residual heat removal system of molten salt reactor, Nucl. Eng. Des. 265 (2013) 691-700. https://doi.org/10.1016/j.nucengdes.2013.09.023
- Steve, Fast parallel algorithms for short-range molecular dynamics, J. Comput. Phys. 1 (1995) 1-19. https://doi.org/10.1016/0021-9991(66)90009-X
- T. Halicioglu, G.M. Pound, Calculation of potential energy parameters form crystalline state properties, Physica status solidi. A, Applied research 30 (1975) 619-623. https://doi.org/10.1002/pssa.2210300223
- J.R. Errington, Direct calculation of liquid-vapor phase equilibria from transition matrix Monte Carlo simulation, J. Chem. Phys. 118 (2003) 9915-9925. https://doi.org/10.1063/1.1572463
- V.K. Shen, J.R. Errington, Metastability and instability in the Lennard-Jones fluid investigated by transition-matrix Monte Carlo, J. Phys. Chem. B 108 (2004) 19595-19606. https://doi.org/10.1021/jp040218y
- J.K.F.L. Leibowitz, Thermodynamic and Transport Properties of Sodium Liquid and Vapor, Argonne National Laboratory, Illinois, 1995.
- A. Stukowski, Visualization and analysis of atomistic simulation data with OVITO-the Open Visualization Tool, Model. Simulat. Mater. Sci. Eng. 18 (2010) 15012. https://doi.org/10.1088/0965-0393/18/1/015012
- Z. Liang, P. Keblinski, Molecular simulation of steady-state evaporation and condensation in the presence of a non-condensable gas, J. Chem. Phys. 148 (2018) 64708. https://doi.org/10.1063/1.5020095
- Z. Liang, A. Chandra, E. Bird, P. Keblinski, A molecular dynamics study of transient evaporation and condensation, Int. J. Heat Mass Tran. 149 (2020) 119152. https://doi.org/10.1016/j.ijheatmasstransfer.2019.119152
- R.K.J.S.C. Saxena, Thermal Accommodation and Adsorption Coefficients of Gases, Hemisphere Publishing Corporation, New York, 1989.
- A. Faghri, Heat-Pipe-Science-and-Technology-Amir-Faghri, Taylor & Francis, Washington, 1995.
- Z. Wang, R. Han, K. Guo, C. Wang, D. Zhang, W. Tian, S. Qiu, G. Su, Molecular dynamics simulation of the evaporation of liquid sodium film in the presence of non-condensable gas, Ann. Nucl. Energy 170 (2022), 109005. https://doi.org/10.1016/j.anucene.2022.109005