DOI QR코드

DOI QR Code

Optimized TOF-PET detector using scintillation crystal array for brain imaging

  • Leem, Hyuntae (Molecular Imaging Research & Education (MiRe) Laboratory, Department of Electronic Engineering, Sogang University) ;
  • Choi, Yong (Molecular Imaging Research & Education (MiRe) Laboratory, Department of Electronic Engineering, Sogang University) ;
  • Jung, Jiwoong (Molecular Imaging Research & Education (MiRe) Laboratory, Department of Electronic Engineering, Sogang University) ;
  • Park, Kuntai (Molecular Imaging Research & Education (MiRe) Laboratory, Department of Electronic Engineering, Sogang University) ;
  • Kim, Yeonkyeong (Molecular Imaging Research & Education (MiRe) Laboratory, Department of Electronic Engineering, Sogang University) ;
  • Jung, Jin Ho (Molecular Imaging Research & Education (MiRe) Laboratory, Department of Electronic Engineering, Sogang University)
  • 투고 : 2021.07.26
  • 심사 : 2022.02.09
  • 발행 : 2022.07.25

초록

Research groups in the field of PET instrumentation are studying time-of-flight(TOF) technology to improve the signal-to-noise ratio of PET images. Scintillation light transport and collection plays an important role in improving the coincidence resolving time(CRT) of PET detector based on a pixelated crystal array. Four crystal arrays were designed by the different optical reflection configuration such as external reflectors and surface treatment on the CRT and compared with the light output, energy resolution and CRT. The design proposed in the study was composed of 8 × 8 LYSO crystal array consisted of 3 × 3 × 15 mm3 pixels. The entrance side was roughened while the other five surfaces were polished. Four sides of all crystal pixels were wrapped with ESR-film, and the entrance surface was covered by Teflon-tape. The design provided an excellent timing resolution of 210 ps and improved the CRT by 16% compared to the conventional method using a polishing treatment and ESR-film. This study provided a method for improving the light output and CRT of a pixelated scintillation crystal-based brain TOF PET detector. The proposed configuration might be an attractive detector design for TOF brain PET requiring fast timing performance with high cost-effectiveness.

키워드

과제정보

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (No. 2019R1I1A1A01041347) and by the Technology development Program (No. S2840619) funded by the Ministry of SMEs and Startups(MSS, Korea) and by the Korea Medical Device Development Fund grant funded by the Korea government (the Ministry of Science and ICT, the Ministry of Trade, Industry and Energy, the Ministry of Health & Welfare, the Ministry of Food and Drug Safety) (Project Number: KMDF_PR_20200901_0006).

참고문헌

  1. J.H. Jung, Y. Choi, J. Jung, S. Kim, H.K. Lim, K.C. Im, C.H. Oh, H. Park, K.M. Kim, J.G. Kim, Development of PET/MRI with insertable PET for simultaneous PET and MR imaging of human brain, Med. Phys. 42 (2015) 2354-2363. https://doi.org/10.1118/1.4918321
  2. K.J. Hong, Y. Choi, J.H. Jung, J. Kang, W. Hu, H.K. Lim, Y. Huh, S. Kim, J.W. Jung, K.B. Kim, M.S. Song, H.-W. Park, A prototype MR insertable brain PET using tileable GAPD arrays, Med. Phys. 40 (2013) 1-12. https://doi.org/10.1002/j.2473-4209.2013.tb00206.x
  3. N.Y. Lee, Y. Choi, Simulation studies on depth of interaction effect correction using a Monte Carlo computed system matrix for brain positron emission tomography, Comput. Methods Progr. Biomed. 108 (2012), https://doi.org/10.1016/j.cmpb.2012.05.007.
  4. H. Shin, Y. Choi, Y. Huh, J.H. Jung, T.S. Suh, Conceptual study of brain dedicated PET improving sensitivity, Kor. Soc. Med. Phys. 27 (2016) 236-240.
  5. K. Wienhard, M. Schmand, M.E. Casey, K. Baker, J. Bao, L. Eriksson, W.F. Jones, C. Knoess, M. Lenox, M. Lercher, P. Luk, C. Michel, J.H. Reed, N. Richerzhagen, J. Treffert, S. Vollmar, J.W. Young, W.D. Heiss, R. Nutt, The ECAT HRRT: performance and first clinical application of the new high resolution research tomograph, IEEE Trans. Nucl. Sci. 49 (2002) 104-110. https://doi.org/10.1109/TNS.2002.998689
  6. C. Catana, Development of dedicated brain PET imaging devices: recent advances and future perspectives, J. Nucl. Med. 60 (2019) 1044-1052. https://doi.org/10.2967/jnumed.118.217901
  7. S. Majewski, J. Proffitt, J. Brefczynski-Lewis, A. Stolin, A.G. Weisenberger, W. Xi, R. Wojcik, HelmetPET: A Silicon Photomultiplier Based Wearable Brain Imager, in: IEEE Nucl. Sci. Symp. Conf. Rec, IEEE NSS/MIC/RTSD, Valencia, Spain, Oct. 2011, pp. 23-29.
  8. C.R. Schmidtlein, J.N. Turner, M.O. Thompson, K.C. Mandal, I. Haggstrom, J. Zhang, J.L. Humm, D.H. Feiglin, A. Krole, Initial performance studies of a wearable brain positron emission tomography camera based on autonomous thin-film digital Geiger avalanche photodiode arrays, J. Med. Imag. 4 (2017), https://doi.org/10.1117/1.JMI.4.1.011003.
  9. J.S. Karp, S. Surti, M.t E.D. Witherspoon, G. Muehllehner, Benefit of time-of-flight in PET: experimental and clinical results, J. Nucl. Med. 48 (2008) 462-470.
  10. H. Thoen, V. Keereman, P. Mollet, R. Van Holen, S. Vandenberghe, Influence of detector pixel size, TOF resolution and DOI on image quality in MR-compatible whole-body PET, Phys. Med. Biol. 58 (2013) 6459-6479. https://doi.org/10.1088/0031-9155/58/18/6459
  11. S. Vandenberghe, E. Mikhaylova, E. D'Hoe, P. Mollet, J.S. Karp, Recent developments in time-of-flight PET, Eur. J. Nucl. Med. Mol. Imag. Phys. 3 (2016). https://ejnmmiphys.springeropen.com/articles/10.1186/s40658-016-0138-3.
  12. M. Conti, Focus on time-of-flight PET: the benefits of improved time resolution, Eur. J. Nucl. Med. Mol. Imag. Phys. 38 (2011) 1147-1157. https://doi.org/10.1007/s00259-010-1711-y
  13. E. Yoshida, H. Tashima, G. Akamatsu, Y. Iwao, M. Takahashi, T. Yamashita, T. Yamaya, 245 ps-TOF brain-dedicated PET prototype with a hemispherical detector arrangement, Phys. Med. Biol. 65 (2020). https://iopscience.iop.org/article/10.1088/1361-6560/ab8c91.
  14. S.W. Lee, Y. Cho, J. Kang, J.H. Jung, Development of a multiplexed readout with high position resolution for positron emission tomography, Nucl. Instrum. Methods Phys. Res. A 850 (2017) 42-47. https://doi.org/10.1016/j.nima.2017.01.026
  15. M. Conti, B. Bendriem, The new opportunities for high time resolution clinical TOF PET, Clin. Transl. Imaging 7 (2019), https://doi.org/10.1007/s40336-019-00316-5.
  16. S. Gundacker, F. Acerbi, E. Auffray, A. Ferri, A. Gola, M.V. Nemallapudi, G. Paternoster, C. Piemonte, P. Lecoq, State of the art timing in TOF-PET detectors with LuAG, GAGG and L(Y)SO scintillators of various sizes coupled to FBK-SiPMs, J. Instrum. 11 (2016). https://iopscience.iop.org/article/10.1088/1748-0221/11/08/P08008.
  17. E. Berg, E. Roncali, S.R. Cherry, Optimizing light transport in scintillation crystals for time-of-flight PET: an experimental and optical Monte Carlo simulation study, Biomed. Opt Express 6 (2015) 2220-2230. https://doi.org/10.1364/BOE.6.002220
  18. C. Kim, M. Ito, D.L. McDaniel, Effect of Scintillation Crystal Surface Finish in the Light Sharing TOF PET Detector, 2016. IEEE Nucl. Sci. Symp. Conf. Rec, IEEE NSS/MIC/RTSD, Strausbourg, France, 29 Oct.-6 Nov.
  19. C.M. Lavelle, W. Shanks, C. Chiang, M. Nichols, J. Osborne Jr., A. Herschelman, B. Brown, M. Cho, Approaches for single channel large area silicon photomultiplier array readout, AIP Adv. 9 (2019), https://doi.org/10.1063/1.5088503.
  20. V. Nadig, D. Schug, B. Weissler, V. Schulz, Evaluation of the PETsys TOFPET2 ASIC in multi-channel coincidence experiments, Eur. J. Nucl. Med. Mol. Imag. Phys. 30 (2021). https://ejnmmiphys.springeropen.com/articles/10.1186/s40658-021-00370-x.
  21. K.B. Kim, Y. Choi, J.W. Jung, S.W. Lee, H.-J. Choe, H.T. Leem, Analog and digital signal processing method using multi-time-over-threshold and FPGA for PET, Med. Phys. 45 (2018) 4104-4111. https://doi.org/10.1002/mp.13101
  22. T. Nagano, N. Hosokawa, A. Ishida, R. Tsuchiya, K. Sato, K. Yamamoto, Timing Resolution Dependence on MPPC Geometry and Performance, 2013. IEEE Nucl. Sci. Symp. Med. Imag. Conf., Seoul, Korea (South), 27 Oct.-2 Nov.
  23. C.-Y. Liu, A.L. Goertzen, Improved event positioning in a gamma ray detector using an iterative position-weighted centre-of-gravity algorithm, Phys. Med. Biol. 58 (2013) N189-N200. https://doi.org/10.1088/0031-9155/58/14/N189
  24. H.T. Leem, Y. Choi, K.B. Kim, S. Lee, S. Yamamoto, J.-Y. Yeom, Performance evaluation of a sub-millimeter spatial resolution PET detector module using a digital silicon photomultiplier coupled LGSO array, Nucl. Instrum. Methods Phys. Res. A 846 (2017) 18-22. https://doi.org/10.1016/j.nima.2016.11.060
  25. H.-J. Choe, Y. Choi, W. Hu, J. Yan, J.H. Jung, Development of capacitive multiplexing circuit for SiPM-based time-of-flight (TOF) PET detector, Phys. Med. Biol. 62 (2017) N120-N133. https://doi.org/10.1088/0031-9155/62/7/N120
  26. M. Aykac, F. Bauer, C.W. Williams, M. Loope, M. Schmand, Timing performance of Hi-Rez detector for time-of-flight (TOF) PET, IEEE Trans. Nucl. Sci. 53 (2006) 1084-1089. https://doi.org/10.1109/TNS.2006.874957
  27. E. Roncali, M.A.M. Shirazi, A. Badano, Modelling the transport of optical photons in scintillation detectors for diagnostic and radiotherapy imaging, Phys. Med. Biol. 62 (2017) R207-R235. https://doi.org/10.1088/0031-9155/62/20/R207
  28. E. Roncali, M. Stockhoff, S.R. Cherry, An integrated model of scintillator-reflector properties for advanced simulations of optical transport, Phys. Med. Biol. 62 (2017) 4811-4830. https://doi.org/10.1088/0031-9155/62/12/4811
  29. D.J.V. Elburg, S.D. Noble, S. Hagey, A. Goertzen, Comparison of acrylic polymer adhesive tapes and silicone optical grease in light sharing detectors for positron emission tomography, Phys. Med. Biol. 63 (2018). https://iopscience.iop.org/article/10.1088/1361-6560/aaa815.
  30. E. Lorincz, G. Erdei, I. Peczeli, C. Steinbach, F. Ujhelyi, T. Bukki, Modeling and optimization of scintillator arrays for PET detectors, IEEE Trans. Nucl. Sci. 57 (2010) 48-54. https://doi.org/10.1109/TNS.2009.2038215