DOI QR코드

DOI QR Code

Deuterium ion irradiation impact on the current-carrying capacity of DI-BSCCO superconducting tape

  • Rajput, M. (Institute for Plasma Research) ;
  • Swami, H.L. (Institute for Plasma Research) ;
  • Kumar, R. (Institute for Plasma Research) ;
  • Bano, A. (Institute for Plasma Research) ;
  • Vala, S. (Institute for Plasma Research) ;
  • Abhangi, M. (Institute for Plasma Research) ;
  • Prasad, Upendra (Institute for Plasma Research) ;
  • Kumar, Rajesh (Institute for Plasma Research) ;
  • Srinivasan, R. (Institute for Plasma Research)
  • 투고 : 2021.12.14
  • 심사 : 2022.02.07
  • 발행 : 2022.07.25

초록

In the present work, we have irradiated the DI-BSCCO superconducting tapes with the 100 keV deuterium ions to investigate the effect of ion irradiation on their critical current (Ic). The damage simulations are carried out using the binary collision approximation method to get the spatial distribution and depth profile of the damage events in the high temperature superconducting (HTS) tape. The point defects are formed near the surface of the HTS tape. These point defects change the vortex profile in the superconducting tape. Due to the long-range interaction of vortices with each other, the Ic of the tape degrades at the 77 K and self magnetic field. The radiation dose of 2.90 MGy degrades the 44% critical current of the tape. The results of the displacement per atom (dpa) and dose deposited by the deuterium ions are used to fit an empirical relation for predicting the degradation of the Ic of the tape. We include the dpa, dose and columnar defect terms produced by the incident particles in the empirical relation. The fitted empirical relation predicts that light ion irradiation degrades the Ic in the DI-BSCCO tape at the self field. This empirical relation can also be used in neutron irradiation to predict the lifetime of the DI-BSCCO tape. The change in the Ic of the DI-BSCCO tape due to deuterium irradiation is compared with the other second-generation HTS tape irradiated with energetic radiation.

키워드

참고문헌

  1. Pierluigi Bruzzone, et al., High temperature superconductors for fusion magnets, Nucl. Fusion 58 (2018), 103001. https://doi.org/10.1088/1741-4326/aad835
  2. M. Kikuchi, et al., Development of new types of DI-BSCCO wire, SEI Tech. Rev. 66 (2008) 73-80.
  3. V. Selvamanickam, et al., High critical currents in heavily doped (Gd,Y) Ba2Cu3Ox superconductor tapes, Appl. Phys. Lett. 106 (2015), 032601. https://doi.org/10.1063/1.4906205
  4. Alex Creely, Erica Salazar, A commercial path to fusion, physics world focus on instruments & vacuum. https://physicsworld.com/a/a-commercial-path-tofusion/, 2019.
  5. Kai Nordlund, Historical review of computer simulation of radiation effects in materials, J. Nucl. Mater. 520 (2019) 273-295. https://doi.org/10.1016/j.jnucmat.2019.04.028
  6. M. Eisterer, Radiation effects on iron-based superconductors, Supercond. Sci. Technol. 31 (2018), 013001. https://doi.org/10.1088/0953-2048/31/1/013001
  7. Zeller, et al., Radiation damage to Bscco-2223 from 50 Mev protons, AIP Conf. Proc. 986 (2008) 416.
  8. A.A. Gapud, et al., Irradiation response of commercial high-Tc superconducting tapes: electromagnetic transport properties, J. Nucl. Mater. 462 (2015) 108-113. https://doi.org/10.1016/j.jnucmat.2015.03.047
  9. W.J. Choi, et al., Effect of the proton irradiation on the thermally activated flux flow in superconducting SmBCO coated conductors, Sci. Rep. 10 (2020) 11. https://doi.org/10.1038/s41598-019-56153-z
  10. Toru Aoki, et al., Effect of neutron irradiation on high-temperature superconductors, IEEE Trans. Appl. Supercond. 21 (2011) 3200-3202. https://doi.org/10.1109/TASC.2010.2101999
  11. M. Rajput, R. Srinivasan, Study of transmutation, gas production, and displacement damage in chromium for fusion neutron spectrum, Ann. Nucl. Energy 1381 (2020), 107187.
  12. M. Rajput, et al., Displacement damage study in tungsten and iron for fusion neutron irradiation, Fusion Eng. Des. 150 (2020), 111370. https://doi.org/10.1016/j.fusengdes.2019.111370
  13. E. Mezzetti, et al., Control of the critical current density in YBa2Cu3O7-0 films by means of intergrain and intragrain correlated defects, Phys. Rev. B 59 (1999) 5. https://doi.org/10.1103/physrevb.59.5
  14. A. Molodyk, et al., Development and large volume production of extremely high current density YBa2Cu3O7 superconducting wires for fusion applications, Sci. Rep. 11 (2021) 2084. https://doi.org/10.1038/s41598-021-81559-z
  15. Feng Xue, et al., Critical current density through grain boundaries in high-temperature superconductors, J. Supercond. Nov. Magnetism 29 (2016) 2711-2716. https://doi.org/10.1007/s10948-016-3729-2
  16. M. Eisterer, et al., Neutron irradiation of coated conductors, Supercond. Sci. Technol. 23 (2009), 014009. https://doi.org/10.1088/0953-2048/23/1/014009
  17. W.K. Kwok, et al., Vortices in high-performance high-temperature superconductors, Rep. Prog. Phys. 79 (2016), 116501. https://doi.org/10.1088/0034-4885/79/11/116501
  18. H. Yamamoto, et al., Effect of non-uniform proton irradiation on the critical current of REBCO tapes, J. Phys.: Conf. Ser. 1559 (2020), 012045. https://doi.org/10.1088/1742-6596/1559/1/012045
  19. J.F. Ziegler, J.P. Biersack, M.D. Ziegler, SRIM - the stopping and range of ions in matter, Nucl. Instrum. Methods Phys. Res. B 268 (2010) 1818-1823, 2010. https://doi.org/10.1016/j.nimb.2010.02.091
  20. W.J. Weber, Y. Zhang, Predicting damage production in monoatomic and multi-elemental targets using stopping and range of ions in matter code: challenges and recommendations, Curr. Opin. Solid State Mater. Sci. 23 (2019), 100757. https://doi.org/10.1016/j.cossms.2019.06.001
  21. S.J. Vala, et al., Development and performance of a 14-MeV neutron generatorNucl, Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 959 (2020), 163495. https://doi.org/10.1016/j.nima.2020.163495
  22. M.I. Norgett, M.T. Robinson, A proposed method of calculating displacement dose rates, Nucl. Eng. Des. 33 (1976) 50-54. https://doi.org/10.1016/0029-5493(75)90035-7
  23. Kai Nordlund, et al., Improving atomic displacement and replacement calculations with physically realistic damage models, Nat. Commun. 9 (2018) 1084. https://doi.org/10.1038/s41467-018-03415-5
  24. M. Rajput, et al., Displacement damage study in tungsten and iron for fusion neutron irradiation, Fusion Eng. Des. 130 (2018) 114-121. https://doi.org/10.1016/j.fusengdes.2018.03.051
  25. A. Gurevich, Superconductivity: Critical Currents, Encyclopedia of Condensed Matter Physics, 2005, pp. 82-88.
  26. D.X. Fischer, et al., The effect of fast neutron irradiation on the superconducting properties of REBCO coated conductors with and without artificial pinning centers, Supercond. Sci. Technol. 31 (2018), 044006. https://doi.org/10.1088/0953-2048/31/4/044006
  27. K.J. Leonard, et al., Irradiation performance of rare earth and nanoparticle enhanced high temperature superconducting films based on YBCO, Nucl. Mater. Energy 9 (2016) 251-255. https://doi.org/10.1016/j.nme.2016.03.004
  28. Konobeyev, et al., Dpa cross section library. https://www-nds.iaea.org/public/download-endf/DXS/Displacement_XS/DXS.(2018)/, 2018.
  29. Sesase, et al., Defect structure of high-Tc superconductor by high-energy heavy ion irradiation, J. Electron. Microsc. 51 (2002) S235-S238. https://doi.org/10.1093/jmicro/51.Supplement.S235
  30. L. Civale, et al., Vortex confinement by columnar defects in YBa2Cu3O7 crystals: enhanced pinning at high fields and temperatures, Phys. Rev. Lett. 67 (1991) 648. https://doi.org/10.1103/PhysRevLett.67.648
  31. Brown, et al., Radiation effects in superconducting fusion-magnet materials, J. Nucl. Mater. 97 (1981) 1-14. https://doi.org/10.1016/0022-3115(81)90411-6
  32. Troitskii, et al., The effect of Xe ion irradiation (40, 80 MeV) on HTS-2G GdBa2Cu3O7-x, Physica C: Supercond. Appl. 572 (2020), 1353631. https://doi.org/10.1016/j.physc.2020.1353631
  33. L. Bromberg, et al., Options for the use of high temperature superconductor in tokamak fusion reactor designs, Fusion Eng. Des. 542 (2001) 167-180. https://doi.org/10.1016/S0920-3796(00)00432-4