DOI QR코드

DOI QR Code

Two new relationships for slip velocity and characteristic velocity in a non-center rotating column

  • Torkaman, Rezvan (Nuclear Fuel Cycle Research School, Nuclear Science and Technology Research Institute) ;
  • Heydari, Mehran (Nuclear Fuel Cycle Research School, Nuclear Science and Technology Research Institute) ;
  • Cheshmeh, Javad Najafi (Faculty of Chemical, Gas and Petroleum Engineering, Semnan University) ;
  • Heydari, Ali (Faculty of Chemical, Gas and Petroleum Engineering, Semnan University) ;
  • Asadollahzadeh, Mehdi (Nuclear Fuel Cycle Research School, Nuclear Science and Technology Research Institute)
  • 투고 : 2021.11.11
  • 심사 : 2022.02.16
  • 발행 : 2022.08.25

초록

In this investigation work, liquid-liquid extraction (L.L.E) through three distinctive frameworks have been examined for assurance of slip velocity (S.V), and characteristic velocity (C.V) in a non-center rotating column (N.C.R.C) with a wide extend of factors. Three double frameworks with distinctive interfacial tension comprising of toluene-water (high interfacial tension), n-butyl acetate-water (medium interfacial tension), and n-butanol-water (low interfacial tension) were investigated for tests. Two common relationships for the expectation of S.V and C.V, including phase stream rates, rotor speed, column geometry additionally physical properties, are displayed. The recommended relationships were compared with test information gotten from the writing and the display examination. Findings of this study, the present proposed correlations are more accurate than those previously reported.

키워드

참고문헌

  1. H.O. Chang, Handbook of Hazardous and Radioactive Waste Treatment Technologies, CRC Press, Boca Raton, 2001.
  2. A. Warade, R. Gaikwad, R. Sapkal, V. Sapkal, Simulation of multistage countercurrent liquid-liquid extraction, Leonardo J. Sci. 20 (2011) 79-94.
  3. B. Shakib, R. Torkaman, M. Torab-Mostaedi, M. Asadollahzadeh, Observational comparative study in Kuhni and ORC agitated columns for the mechanism and performance of molybdenum extraction under various hydrodynamic conditions, Int. J. Heat Mass Tran. 185 (2021) 122337.
  4. M. Asadollahzadeh, R. Torkaman, M. Torab-Mostaedi, M. Saremi, Experimental and modeling investigation of cobalt ion extraction in multistage extractor: efficient evaluation of mass transfer coefficients using forward mixing approach, Int. Commun. Heat Mass Tran. 125 (2021) 105359. https://doi.org/10.1016/j.icheatmasstransfer.2021.105359
  5. M. Asadollahzadeh, R. Torkaman, M. Torab-Mostaedi, Testing the implementation of a pilot-scale kuhni column in reactive and non-reactive condition, Geosystem Eng. 24 (2021) 88-100. https://doi.org/10.1080/12269328.2020.1860837
  6. B. Shakib, R. Torkaman, M. Torab-Mostaedi, M. Asadollahzadeh, Revealing mass transfer and hydrodynamic effects in a PRDC column by using the integration of extraction and separation for molybdenum and tungsten ions from aqueous solution, Chem. Pap. 74 (2020) 4295-4313. https://doi.org/10.1007/s11696-020-01241-y
  7. B. Shakib, R. Torkaman, M. Torab-Mostaedi, M. Asadollahzadeh, Proficiency of tellurium extraction in pulsed disc and doughnut columns, Separ. Sci. Technol. 56 (2021) 3092-3105. https://doi.org/10.1080/01496395.2020.1851259
  8. R. Torkaman, M. Saremi, M. Torab-Mostaedi, M. Asadollahzadeh, Characterization of mass transfer study in a Kuhni continuous extractor for rare earth processing using axial dispersion and backflow models, Int. Commun. Heat Mass Tran. 127 (2021) 105555. https://doi.org/10.1016/j.icheatmasstransfer.2021.105555
  9. M. Asadollahzadeh, R. Torkaman, M. Torab-Mostaedi, M. Saremi, Assessment of mass transfer coefficients in extraction stages of La(III) and Ce(III) ions by using rotating Scheibel column with regular packing structure, Separ. Purif. Technol. 274 (2021) 119118. https://doi.org/10.1016/j.seppur.2021.119118
  10. M. Asadollahzadeh, R. Torkaman, M. Torab-Mostaedi, M. Saremi, Experimental investigation and mass transfer modelling in rotating disc contactor with asymmetric configuration for zinc recovery, Separ. Purif. Technol. 273 (2021) 118961. https://doi.org/10.1016/j.seppur.2021.118961
  11. B.D. Kadam, J.B. Joshi, R.N. Patil, Hydrodynamic and mass transfer characteristics of asymmetric rotating disc extractors, Chem. Eng. Res. Des. 87 (2009) 756-769. https://doi.org/10.1016/j.cherd.2008.10.001
  12. M. Asadollahzadeh, M. Torab-Mostaedi, R. Torkaman, Holdup and flooding measurements in an asymmetric rotating disc column, Chem. Eng. Process 109 (2016) 97-103. https://doi.org/10.1016/j.cep.2016.08.018
  13. M. Asadollahzadeh, M. Torab-Mostaedi, R. Torkaman, Drop behavior in a pilot plant asymmetric rotating disc extraction column for three various liquid-liquid systems, Chem. Eng. Res. Des. 138 (2018) 366-373. https://doi.org/10.1016/j.cherd.2018.03.013
  14. B. Shakib, R. Torkaman, M. Torab-Mostaedi, M. Asadollahzadeh, Mass transfer studies in RDC column by the coupling effects of perforated structure and reactive extraction of Mo(VI) and W(VI) from sulfate solution, Int. Commun. Heat Mass Tran. 118 (2020) 104903. https://doi.org/10.1016/j.icheatmasstransfer.2020.104903
  15. M. Asadollahzadeh, R. Torkaman, M. Torab-Mostaedi, Optimization of lanthanum extraction in asymmetric rotation pilot plant column by using central composite methodology, Geosystem Eng. 23 (2020) 101-111. https://doi.org/10.1080/12269328.2020.1719905
  16. M. Asadollahzadeh, R. Torkaman, M. Torab-Mostaedi, Continuous extraction of europium(III) by ionic liquid in the rotating disk column with an asymmetrical structure aimed at the evaluation of reactive mass transfer, ACS Omega 5 (2020) 18700-18709. https://doi.org/10.1021/acsomega.0c01636
  17. R. Torkaman, M. Asadollahzadeh, M. Torab-Mostaedi, Determination of slip and characteristic velocities in reactive extraction with experiments in the Oldshue-Rushton column and presence of samarium and gadolinium metals, Chem. Eng. Process 111 (2017) 7-13. https://doi.org/10.1016/j.cep.2016.10.018
  18. M. Asadollahzadeh, R. Torkaman, M. Torab-Mostaedi, New correlations for slip velocity and characteristic velocity in a rotary liquid-liquid extraction column, Chem. Eng. Res. Des. 127 (2017) 146-153. https://doi.org/10.1016/j.cherd.2017.07.032
  19. M. Torab-Mostaedi, H. Jalilvand, M. Outokesh, Slip Velocity in pulsed disc and doughnut extraction columns, Chem. Ind. Chem. Eng. Q. 17 (2011) 333-339. https://doi.org/10.2298/CICEQ110123019T
  20. J.C. Godfrey, M.J. Slater, Slip velocity relationships for liquid-liquid extraction columns, Chem. Eng. Res. Des. 69 (1991) 130-141.
  21. R. Gayler, H.R.C. Pratt, Holdup and pressure drop in packed columns, Trans. Inst. Chem. Eng. 29 (1951) 110-125.
  22. R. Gayler, N.W. Roberts, H.R.C. Pratt, Liquid-liquid extraction: Part IV., A further study of holdup in packed columns, Trans. Ind. Chem. Eng. 31 (1953) 57-68.
  23. J.F. Richardson, W.N. Zaki, Sedimentation and fluidization, part I, Chem. Eng. Res. Des. 75 (1954) 82-100.
  24. M.J. Slater, Liquid-liquid extraction column design, Can. J. Chem. Eng. 63 (1985) 1004-1007. https://doi.org/10.1002/cjce.5450630620
  25. T. Misek, Hydrodynamic behavior of agitated liquid extractors, Collet. Czech. Chem. Commun. 28 (1963) 1631-1645. https://doi.org/10.1135/cccc19631631
  26. R. Letan, E. Kehat, Mixing effect hydrodynamic behavior of agitated liquid extractors, AIChE J. 11 (1965) 804-809. https://doi.org/10.1002/aic.690110512
  27. T. Misek, R. Berger, J. Schroter, Standard test systems for liquid extraction studies, EFCE Publ. Ser. (1985).
  28. K.K. Al-Aswad, C.J. Mumford, G.V. Jeffreys, The application of drop size discrete drop mass transfer distribution and models to assess the performance of a rotating disc contactor, AIChE J. 31 (1985) 1488-1497. https://doi.org/10.1002/aic.690310911
  29. A. Hemmati, M. Torab-Mostaedi, M. Shirvani, A. Ghaemi, A study of drop size distribution and mean drop size in a perforated rotating disc contactor (PRDC), Chem. Eng. Res. Des. 96 (2015) 54-62. https://doi.org/10.1016/j.cherd.2015.02.005
  30. A.G. Kasatkin, S.Z. Kagan, V.G. Trukhanov, Hold-up of rotating disc extractors, J. Appl. Chem. USSR 35 (1962) 1903-1910.
  31. A. Murakami, A. Misonou, K. Inoue, Dispersed phase hold-up in rotating disc extraction column, Int. Chem. Eng. 18 (1978) 16-22.
  32. S. Sarkar, C.R. Phillips, C.J. Mumford, Characterization of hydrodynamic parameters in rotating disc and oldshue-rushton columns. Hydrodynamic modelling, drop size, hold-up and flooding, Can. J. Chem. Eng. 63 (1985) 701-709. https://doi.org/10.1002/cjce.5450630501
  33. A. Kumar, S. Hartland, Prediction of dispersed phase hold-up in rotating disc contactors, Chem. Eng. Commun. 56 (1987) 87-106. https://doi.org/10.1080/00986448708911939
  34. C. Tsouris, R. Ferreira, L.L. Tavlarides, Characterization of hydrodynamic parameters in a multistage column contactor, Can. J. Chem. Eng. 68 (1990) 913-923. https://doi.org/10.1002/cjce.5450680604
  35. A. Kumar, S. Hartland, Empirical Prediction of Operating Variables, Liquid-Liquid Extraction Equipment, Wiley, New York, 1994.
  36. A. Kumar, S. Hartland, A unified correlation for the prediction of dispersed phase holdup in liquid-liquid extraction columns, Ind. Eng. Chem. Res. 34 (1995) 3925-3939. https://doi.org/10.1021/ie00038a032
  37. M.A. Moris, F.V. Diez, J. Coca, Hydrodynamics of a rotating disc contactor, Separ. Purif. Technol. 11 (1997) 79-92. https://doi.org/10.1016/S1383-5866(96)01003-9
  38. N.S. Oliveira, D.M. Silva, M.P.C. Gondim, M.B. Mansur, A study of the drop size distributions and holdup in short Kuhni columns, Braz. J. Chem. Eng. 25 (2008) 729-740. https://doi.org/10.1590/S0104-66322008000400010
  39. A.R. Hemmati, M. Shirvani, M. Torab-Mostaedi, A. Ghaemi, Hold-up and flooding characteristics in a perforated rotating disc contactor (PRDC), RSC Adv. 5 (2015) 63025-63033. https://doi.org/10.1039/C5RA08938G
  40. M. Asadollahzadeh, M. Torab-Mostaedi, S. Shahhosseini, A. Ghaemi, Experimental investigation of dispersed phase holdup and flooding characteristics in a multistage column extractor, Chem. Eng. Res. Des. 105 (2016) 177-187. https://doi.org/10.1016/j.cherd.2015.11.019
  41. A. Kumar, L. Stelner, S. Hartland, Capacity and hydrodynamics of an agitated extraction column, Ind. Eng. Chem. Process Des. Dev. 25 (1986) 728-733. https://doi.org/10.1021/i200034a022
  42. A. Kumar, S. Hartland, Independent prediction of slip velocity and holdup in liquid-liquid extraction columns, Can, J. Chem. Eng. 67 (1989) 17-25. https://doi.org/10.1002/cjce.5450670104
  43. P. Kalaichelvi, T. Murugesan, Dispersed phase hold-up in rotary disc contactor, Bioprocess Eng. 18 (1998) 105-111. https://doi.org/10.1007/s004490050419
  44. J. Venkataramana, T.E. Degaleesan, G.S. Laddha, Continuous phase Axial mixing in rotary disc contactors, Can. J. Chem. Eng. 58 (1980) 206-211. https://doi.org/10.1002/cjce.5450580211
  45. E. Hashtochahar, A. Haghighi-Asl, M. Torab-Mostaedi, Prediction of slip velocity in a Hanson Mixer-Setteler extraction column, Can. J. Chem. Eng. 88 (2010) 808-817.
  46. M. Asadollahzadeh, M. Torab-Mostaedi, S. Shahhosseini, A. Ghaemi, Holdup, characteristic velocity and slip velocity between two phases in a multiimpeller column for high/medium/low interfacial tension systems, Chem. Eng. Process 100 (2015) 65-78.