DOI QR코드

DOI QR Code

Towards grain-scale modelling of the release of radioactive fission gas from oxide fuel. Part I: SCIANTIX

  • Zullo, G. (Politecnico di Milano, Department of Energy, Nuclear Engineering Division) ;
  • Pizzocri, D. (Politecnico di Milano, Department of Energy, Nuclear Engineering Division) ;
  • Magni, A. (Politecnico di Milano, Department of Energy, Nuclear Engineering Division) ;
  • Van Uffelen, P. (European Commission, Joint Research Centre (JRC)) ;
  • Schubert, A. (European Commission, Joint Research Centre (JRC)) ;
  • Luzzi, L. (Politecnico di Milano, Department of Energy, Nuclear Engineering Division)
  • 투고 : 2021.10.04
  • 심사 : 2022.02.11
  • 발행 : 2022.08.25

초록

When assessing the radiological consequences of postulated accident scenarios, it is of primary interest to determine the amount of radioactive fission gas accumulated in the fuel rod free volume. The state-of-the-art semi-empirical approach (ANS 5.4-2010) is reviewed and compared with a mechanistic approach to evaluate the release of radioactive fission gases. At the intra-granular level, the diffusion-decay equation is handled by a spectral diffusion algorithm. At the inter-granular level, a mechanistic description of the grain boundary is considered: bubble growth and coalescence are treated as interrelated phenomena, resulting in the grain-boundary venting as the onset for the release from the fuel pellets. The outcome is a kinetic description of the release of radioactive fission gases, of interest when assessing normal and off-normal conditions. We implement the model in SCIANTIX and reproduce the release of short-lived fission gases, during the CONTACT 1 experiments. The results show a satisfactory agreement with the measurement and with the state-of-the-art methodology, demonstrating the model soundness. A second work will follow, providing integral fuel rod analysis by coupling the code SCIANTIX with the thermo-mechanical code TRANSURANUS.

키워드

과제정보

This project has received funding from the Euratom research and training programme 2014-2018 under grant agreement No 847656.

참고문헌

  1. G. Ducros, P.P. Malgouyres, M. Kissane, D. Boulaud, M. Durin, Fission product release under severe accidental conditions: general presentation of the program and synthesis of VERCORS 1-6 results, Nucl. Eng. Des. 208 (2) (2001) 191-203, https://doi.org/10.1016/S0029-5493(01)00376-4.
  2. J.H. Song, S.M. An, T. Kim, K.S. Ha, Post-Fukushima challenges for the mitigation of severe accident consequences, Nucl. Eng. Technol. 52 (11) (2020) 2511-2521, https://doi.org/10.1016/j.net.2020.04.031.
  3. K. Tagami, S. Uchida, N. Ishii, J. Zheng, Estimation of Te-132 distribution in fukushima prefecture at the early stage of the Fukushima Daiichi Nuclear Power Plant reactor failures, Environ. Sci. Technol. 47 (10) (2013) 5007-5012, https://doi.org/10.1021/es304730b.
  4. R.S. Denning, R.J. Budnitz, Impact of probabilistic risk assessment and severe accident research in reducing reactor risk, Prog. Nucl. Energy 102 (2018) 90-102, https://doi.org/10.1016/j.pnucene.2017.05.021.
  5. R2CA, URL, http://r2ca-h2020.eu.
  6. A. Magni, A.D. Nevo, L. Luzzi, D. Rozzia, M. Adorni, A. Schubert, P. Van Uffelen, The TRANSURANUS fuel performance code, in: J. Wang, X. Li, C. Allison, J. Hohorst (Eds.), Nuclear Power Plant Design and Analysis Codes - Development, Validation and Application, Woodhead Publishing Series in Energy, Elsevier, 2021, pp. 161-205. Ch. 8.
  7. K. Lassmann, TRANSURANUS: a fuel rod analysis code ready for use, Nucl. Mater. Fission React. (1992) 295-302, https://doi.org/10.1016/b978-0-444-89571-4.50046-3.
  8. B. Dong, L. Li, C. Li, W. Zhou, J. Yin, D. Wang, Review on models to evaluate coolant activity under fuel defect condition in PWR, Ann. Nucl. Energy 124 (2019) 223-233, https://doi.org/10.1016/j.anucene.2018.10.009.
  9. B.J. Lewis, P.K. Chan, A. El-Jaby, F.C. Iglesias, A. Fitchett, Fission product release modelling for application of fuel-failure monitoring and detection - an overview, J. Nucl. Mater. 489 (2017) 64-83, https://doi.org/10.1016/j.jnucmat.2017.03.037.
  10. L.E. Herranz, L. Lebel, F. Mascari, C. Spengler, Progress in modeling incontainment source term with ASTEC-Na, Ann. Nucl. Energy 112 (2018) 84-93, https://doi.org/10.1016/j.anucene.2017.09.037.
  11. S. Nichenko, J. Kalilainen, L. Fernandez Moguel, T. Lind, Modelling of fission products release in VERDON-1 experiment with cGEMS: coupling of severe accident code MELCOR with GEMS thermodynamic modelling package, Ann. Nucl. Energy 152 (2021) 107972, https://doi.org/10.1016/j.anucene.2020.107972.
  12. D. Pizzocri, G. Pastore, T. Barani, A. Magni, L. Luzzi, P. Van Uffelen, S.A. Pitts, A. Alfonsi, J.D. Hales, A model describing intra-granular fission gas behaviour in oxide fuel for advanced engineering tools, J. Nucl. Mater. 502 (2018) 323-330, https://doi.org/10.1016/j.jnucmat.2018.02.024.
  13. G. Pastore, L. Luzzi, V. Di Marcello, P. Van Uffelen, Physics-based modelling of fission gas swelling and release in UO2 applied to integral fuel rod analysis, Nucl. Eng. Des. 256 (2013) 75-86, https://doi.org/10.1016/j.nucengdes.2012.12.002. https://linkinghub.elsevier.com/retrieve/pii/S0029549312005754.
  14. G. Zullo, D. Pizzocri, L. Luzzi, On the use of spectral algorithms for the prediction of short-lived volatile fission product release: Methodology for bounding numerical error, Nuclear Engineering and Technology https://doi.org/10.1016/J.NET.2021.10.028. URL https://linkinghub.elsevier.com/retrieve/pii/S1738573321006148.
  15. J.A. Turnbull, C.E. Beyer, in: Background and Derivation of ANS-5.4 Standard Fission Product Release Model, United States Nuclear Regulatory Commision, 2010, p. 11. URL, http://www.nrc.gov/reading-rm.html.
  16. D. Pizzocri, T. Barani, L. Luzzi, SCIANTIX: a new open source multi-scale code for fission gas behaviour modelling designed for nuclear fuel performance codes, J. Nucl. Mater. 532 (2020) 152042, https://doi.org/10.1016/j.jnucmat.2020.152042.
  17. P. Van Uffelen, A. Schubert, L. Luzzi, T. Barani, A. Magni, D. Pizzocri, M. Lainet, V. Marelle, B. Michel, B. Boer, S. Lemehov, A. Del Nevo, Incorporation and Verification of Models and Properties in Fuel Performance Codes (754329), INSPYRE, 2020. Deliverable D7.2.
  18. R.L. Williamson, K.A. Gamble, D.M. Perez, S.R. Novascone, G. Pastore, R.J. Gardner, J.D. Hales, W. Liu, A. Mai, Validating the BISON fuel performance code to integral LWR experiments, Nucl. Eng. Des. 301 (2016) 232-244, https://doi.org/10.1016/j.nucengdes.2016.02.020.
  19. D.M. Perez, R.L. Williamson, S.R. Novascone, R.J. Gardner, K.A. Gamble, A.T. Rice, G. Pastore, J.D. Hales, B.W. Spencer, Assessment of BISON: a nuclear fuel performance analysis code, 2015, p. 238. Rev.2 (November).
  20. R.S. Barnes, A theory of swelling and gas release for reactor materials, J. Nucl. Mater. 2 (1964) 135-148. https://doi.org/10.1016/0022-3115(64)90002-9
  21. A.D. Whapham, Electron microscope observation of the fission-gas bubble distribution in UO2, Nucl. Appl. (1966) 123-130, https://doi.org/10.13182/NT66-A27492.
  22. R.J. White, M.O. Tucker, A new fission-gas release model, J. Nucl. Mater. 118 (1) (1983) 1-38, https://doi.org/10.1016/0022-3115(83)90176-9.
  23. C.A. Friskney, M.V. Speight, A calculation on the in-pile diffusional release of fission products forming a general decay chain, J. Nucl. Mater. 62 (1976) 89-94. https://doi.org/10.1016/0022-3115(76)90286-5
  24. R.J. White, The development of grain-face porosity in irradiated oxide fuel, J. Nucl. Mater. 325 (1) (2004) 61-77, https://doi.org/10.1016/j.jnucmat.2003.10.008.
  25. L.C. Bernard, J.L. Jacoud, P. Vesco, An efficient model for the analysis of fission gas release, J. Nucl. Mater. 302 (2-3) (2002) 125-134, https://doi.org/10.1016/S0022-3115(02)00793-6.
  26. M.S. Veshchunov, Modelling of grain face bubbles coalescence in irradiated UO2 fuel, J. Nucl. Mater. 374 (1-2) (2008) 44-53, https://doi.org/10.1016/j.jnucmat.2007.06.021.
  27. M.S. Veshchunov, V.D. Ozrin, V.E. Shestak, V.I. Tarasov, R. Dubourg, G. Nicaise, Development of the mechanistic code MFPR for modelling fission-product release from irradiated UO2 fuel, Nucl. Eng. Des. 236 (2) (2006) 179-200, https://doi.org/10.1016/j.nucengdes.2005.08.006.
  28. A. Booth, A Method of Calculating Fission Gas Diffusion from UO2 Fuel and its Application to the X-2-F Loop Test, Atomic Energy of Canada Limited, 1957.
  29. S.D. Beck, The Diffusion of Radioactive Fission Products from Porous Fuel Elements, Physics and Mathematics, fifteenth ed., 1960. TID-4500.
  30. J.A. Turnbull, C.A. Friskney, The relation between microstructure and the release of unstable fission products during high temperature irradiation of uranium dioxide, J. Nucl. Mater. 71 (1978) 238-248. https://doi.org/10.1016/0022-3115(78)90421-X
  31. J.A. Turnbull, C.A. Friskney, J.R. Findlay, F.A. Johnson, A.J. Walter, The diffusion coefficients of gaseous and volatile species during the irradiation of uranium dioxide, J. Nucl. Mater. 107 (2-3) (1982) 168-184, https://doi.org/10.1016/0022-3115(82)90419-6.
  32. J.A. Turnbull, R.J. White, C. Wise, The diffusion coefficient for fission gas atoms in uranium dioxide, in: Water Reactor Fuel Element Computer Modelling in Steady State, Transient and Accident Conditions, 1988, pp. 174-181.
  33. P. Van Uffelen, Contribution to the Modelling of Fission Gas Release in Light Water Reactor Fuel, Universite de Li ege, 2002. Ph.D. thesis .
  34. J.A. Turnbull, The Treatment of Radioactive Fission Gas Release Measurements and Provision of Data for Development and Validation of the ANS-5.4 Model, OECD HALDEN REACTOR PROJECT, 1995.
  35. P.E. Brown, R.L. Faircloth, Metal fission product behaviour in high temperature reactors -UO2 coated particle fuel, J. Nucl. Mater. 59 (1) (1976) 29-41, https://doi.org/10.1016/0022-3115(76)90005-2.
  36. C. Vitanza, E. Kolstad, U. Graziani, Fission Gas Release from UO2 Pellet Fuel at High Burn-Up, OECD HALDEN REACTOR PROJECT, 1979, pp. 361-366.
  37. M. Amaya, V. Grismanovs, T. Tverberg, Changes of the surface-to-volume ratio and diffusion coefficient of fission gas in fuel pellets during irradiation, J. Nucl. Mater. 402 (2-3) (2010) 108-115, https://doi.org/10.1016/j.jnucmat.2010.05.004.
  38. A. Claisse, P. Van Uffelen, Towards the inclusion of open fabrication porosity in a fission gas release model, J. Nucl. Mater. 466 (2015) 351-356, https://doi.org/10.1016/j.jnucmat.2015.08.022.
  39. G. Pastore, D. Pizzocri, C. Rabiti, T. Barani, P. Van Uffelen, L. Luzzi, An effective numerical algorithm for intra-granular fission gas release during nonequilibrium trapping and resolution, J. Nucl. Mater. 509 (2018) 687-699, https://doi.org/10.1016/j.jnucmat.2018.07.030.
  40. D. Pizzocri, C. Rabiti, L. Luzzi, T. Barani, P. Van Uffelen, G. Pastore, PolyPole-1: an accurate numerical algorithm for intra-granular fission gas release, J. Nucl. Mater. 478 (2016) 333-342, https://doi.org/10.1016/j.jnucmat.2016.06.028.
  41. National Nuclear Data Center, URL, https://www.nndc.bnl.gov/nudat2/.
  42. M.V. Speight, A calculation on the migration of fission gas in material exhibiting precipitation and Re-solution of gas atoms under irradiation, Nucl. Sci. Eng. 37 (2) (1969) 180-185, https://doi.org/10.13182/nse69-a20676.
  43. F.S. Ham, Theory of diffusion-limited precipitation, J. Phys. Chem. Solid. 6 (4) (1958) 335-351, https://doi.org/10.1016/0022-3697(58)90053-2.
  44. J.A. Turnbull, The distribution of intragranular fission gas bubbles in UO2 during irradiation, J. Nucl. Mater. 38 (2) (1971) 203-212, https://doi.org/10.1016/0022-3115(71)90044-4.
  45. D.R. Olander, D. Wongsawaeng, Re-solution of fission gas - a review: Part I. Intragranular bubbles, J. Nucl. Mater. 354 (1-3) (2006) 94-109, https://doi.org/10.1016/j.jnucmat.2006.03.010.
  46. W.L. Oberkampf, T.G. Trucano, C. Hirsch, Verification, validation, and predictive capability in computational engineering and physics, Appl. Mech. Rev. 57 (1-6) (2002) 345-384, https://doi.org/10.1115/1.1767847.
  47. M.S. Veshchunov, On the theory of fission gas bubble evolution in irradiated UO2 fuel, J. Nucl. Mater. 277 (2000) 67-81. https://doi.org/10.1016/S0022-3115(99)00136-1
  48. M.V. Speight, W.B. Beere, Vacancy potential and void growth on grain boundaries, Met. Soc. 9 (1975) 190-191. https://doi.org/10.1179/030634575790445161
  49. G.L. Reynolds, W.B. Beere, P.-T. Sawbridge, The effect of fission products on the ratio of grain-boundary energy to surface energy in irradiated uranium dioxide, J. Nucl. Mater. 41 (1971) 112-114. https://doi.org/10.1016/0022-3115(71)90207-8
  50. D.R. Olander, Fundamental Aspects of Nuclear Reactor Fuel Elements, Technical lnformation Center Energy Research and Development Administration, 1976.
  51. D.A. Andersson, M.R. Tonks, L. Casillas, S. Vyas, P. Nerikar, B.P. Uberuaga, C.R. Stanek, Multiscale simulation of xenon diffusion and grain boundary segregation in UO2, J. Nucl. Mater. 462 (2015) 15-25, https://doi.org/10.1016/J.JNUCMAT.2015.03.019.
  52. D.A. Andersson, P. Garcia, X.Y. Liu, G. Pastore, M. Tonks, P. Millett, B. Dorado, D.R. Gaston, D. Andrs, R.L. Williamson, R.C. Martineau, B.P. Uberuaga, C.R. Stanek, Atomistic modeling of intrinsic and radiation-enhanced fission gas (Xe) diffusion in UO2±x: implications for nuclear fuel performance modeling, J. Nucl. Mater. 451 (1-3) (2014) 225-242, https://doi.org/10.1016/J.JNUCMAT.2014.03.041.
  53. A. Jelea, R.J. Pellenq, F. Ribeiro, An atomistic modeling of the xenon bubble behavior in the UO2 matrix, J. Nucl. Mater. 444 (1-3) (2014) 153-160, https://doi.org/10.1016/J.JNUCMAT.2013.09.041.
  54. C.R. Stanek, R.W. Grimes, M.R. Bradford, Segregation of fission products to surfaces of UO2, Mater. Res. Soc. Symp. Proc. 654 (1) (2001). AA3.32.1-AA3.32.6. doi:10.1557/proc-654-aa3.32.1. URL, https://link. springer.com/article/10.1557/PROC-654-AA3.32.1.
  55. R.M. Carroll, J.G. Morgan, R.B. Perez, O. Sisman, Fission density, burnup, and temperature effects on fission-gas release from UO2, Nucl. Sci. Eng. 38 (1969) 143-155, https://doi.org/10.13182/NSE69-A19519. URL, https://www.tandfonline.com/doi/abs/10.13182/NSE69-A19519.
  56. J. Rest, S.M. Gehl, The mechanistic prediction of transient fission-gas release from LWR fuel, Nucl. Eng. Des. 56 (1) (1980) 233-256, https://doi.org/10.1016/0029-5493(80)90189-2.
  57. C.T. Walker, P. Knappik, M. Mogensen, Concerning the development of grain face bubbles and fission gas release in UO2 fuel, J. Nucl. Mater. 160 (1) (1988) 10-23, https://doi.org/10.1016/0022-3115(88)90003-7.
  58. T. Barani, E. Bruschi, D. Pizzocri, G. Pastore, P. Van Uffelen, R.L. Williamson, L. Luzzi, Analysis of transient fission gas behaviour in oxide fuel using BISON and TRANSURANUS, J. Nucl. Mater. 486 (2017) 96-110, https://doi.org/10.1016/j.jnucmat.2016.10.051.
  59. T. Kogai, Modelling of fission gas release and gaseous swelling of light water reactor fuels, J. Nucl. Mater. 244 (2) (1997) 131-140, https://doi.org/10.1016/S0022-3115(96)00731-3.
  60. M. Charles, J.J. Abassin, D. Baron, M. Bruet, P. Melin, Utilization of contact experiments to improve the fission gas release knowledge in Pwr fuel rods, in: IAEA Specialists Meetiing on Fuel Element Performance Computer Modelling, 1983, pp. 1-18. Preston.
  61. M. Bruet, J. Dodelier, P. Melin, M.-L. Pointund, CONTACT 1 and 2 experiments: behaviour of PWR fuel rod up to 15000 MWd/tU, in: IAEA Specialists' Meeting on Water Reactor Fuel Element Performance Computer Modelling, 1980, pp. 235-244.
  62. I.J. Hastings, C.E.L. Hunt, J.J. Lipsett, R.D. Delaney, Short-lived fission product release from the surface and centre of operating UO2 fuel, in: Water Reactor Fuel Element Performance Computer Modelling, IAEA, 1984, pp. 416-425.
  63. I.J. Hastings, C.E.L. Hunt, J.J. Lipsett, R.D. MacDonald, Behaviour of short-lived fission products within operating UO2 fuel elements, Res. Mech. 6 (3) (1983).
  64. T. Barani, D. Pizzocri, F. Cappia, L. Luzzi, G. Pastore, P. Van Uffelen, Modeling high burnup structure in oxide fuels for application to fuel performance codes. part I: high burnup structure formation, J. Nucl. Mater. 539 (2020), https://doi.org/10.1016/j.jnucmat.2020.152296.