DOI QR코드

DOI QR Code

Role of A-TIG process in joining of martensitic and austenitic steels for ultra-supercritical power plants -a state of the art review

  • Bhanu, Vishwa (Department of Mechanical Engineering, IIT Jodhpur) ;
  • Gupta, Ankur (Department of Mechanical Engineering, IIT Jodhpur) ;
  • Pandey, Chandan (Department of Mechanical Engineering, IIT Jodhpur)
  • 투고 : 2021.12.06
  • 심사 : 2022.03.02
  • 발행 : 2022.08.25

초록

The need for Dissimilar Welded Joint (DWJ) in the power plant components arises in order to increase the overall efficiency of the plant and to avoid premature failure in the component welds. The Activated-Tungsten Inert Gas (A-TIG) welding process, which is a variant of Tungsten Inert Gas (TIG) welding, is focus of this review work concerning the DWJ of nuclear grade creep-strength enhanced ferritic/martensitic (CSEF/M) steels and austenitic steels. A-TIG DWJs are compared with Multipass-Tungsten Inert Gas (M-TIG) DWJ based on their mechanical and microstructural properties. The limitations of multipass welding have put A-TIG welding in focus as A-TIG provides a weld with increased depth of penetration (DOP) and enhanced mechanical properties. Hence, this review article covers the A-TIG welding principle and working parameters along with detailed analysis of role played by the flux in welding procedure. Further, weld characteristics of martensitic and austenitic steel DWJ developed with the A-TIG welding process and the M-TIG welding process are compared in this study as there are differences in mechanical, microstructural, creep-related, and residual stress obtained in both TIG variants. The mechanics involved in the welding process is deliberated which is revealed by microstructural changes and behavior of base metals and WFZ.

키워드

참고문헌

  1. K. Laha, S. Latha, K. Bhanu Sankara Rao, S.L. Mannan, D.H. Sastry, Comparison of creep behaviour of 2.25Cr-1Mo/9Cr-1Mo dissimilar weld joint with its base and weld metals, Mater. Sci. Technol. 17 (2001) 1265-1272, https://doi.org/10.1179/026708301101509188.
  2. D.W. Rathod, S. Pandey, P.K. Singh, R. Prasad, Experimental analysis of dissimilar metal weld joint: ferritic to austenitic stainless steel, Mater. Sci. Eng. A. 639 (2015) 259-268, https://doi.org/10.1016/j.msea.2015.05.011.
  3. C. Pandey, Mechanical and metallurgical characterization of dissimilar P92/SS304 L welded joints under varying heat treatment regimes, Metall. Mater. Trans. 51 (2020) 2126-2142, https://doi.org/10.1007/s11661-020-05660-0.
  4. R.S. Vidyarthy, A. Kulkarni, D.K. Dwivedi, Study of microstructure and mechanical property relationships of A-TIG welded P91-316L dissimilar steel joint, Mater. Sci. Eng. A. 695 (2017) 249-257, https://doi.org/10.1016/j.msea.2017.04.038.
  5. J. Akram, P.R. Kalvala, M. Misra, I. Charit, Creep behavior of dissimilar metal weld joints between P91 and AISI 304, Mater. Sci. Eng. A. 688 (2017) 396-406, https://doi.org/10.1016/j.msea.2017.02.026.
  6. G. Golanski, A. Merda, K. Klimaszewska, P. Wieczorek, Examinations of the welded joint T91 steel after service at elevated temperature, Arch. Metall. Mater. 65 (2020) 237-242, https://doi.org/10.24425/amm.2019.131120.
  7. J.C. Vaillant, B. Vandenberghe, B. Hahn, H. Heuser, C. Jochum, T/P23, 24, 911 and 92: new grades for advanced coal-fired power plants-Properties and experience, Int. J. Pres. Ves. Pip. 85 (2008) 38-46, https://doi.org/10.1016/j.ijpvp.2007.06.011.
  8. P. Sharma, D.K. Dwivedi, A-TIG welding of dissimilar P92 steel and 304H austenitic stainless steel: mechanisms, microstructure and mechanical properties, J. Manuf. Process. 44 (2019) 166-178, https://doi.org/10.1016/j.jmapro.2019.06.003.
  9. R. Fuchs, H. Heuser, B. Hahn, Welding of dissimilar materials, Mater. A. T. High. Temp. 27 (2010) 183-190, https://doi.org/10.3184/096034010X12813771363483.
  10. Review of Fabrication and In-Service Performnce of a Grade 91 H, Palo Alto EPRI, 2013, p. 3002001831.
  11. X. Liu, F. Lu, R. Yang, P. Wang, X. Xu, X. Huo, Investigation on mechanical properties of 9%Cr/CrMoV dissimilar steels welded joint, J. Mater. Eng. Perform. 24 (2015) 1434-1440, https://doi.org/10.1007/s11665-015-1428-y.
  12. J.A. Siefert, J.N. DuPont, Material behavior of T23 and T24. Proceedings from seventh, Int. Conf. Adv. Mater. Technol. Foss. Power. Plants Hawaii. ASM Int. (2014) 513-524.
  13. Y.Y. You, R.K. Shiue, R.H. Shiue, C. Chen, The study of carbon migration in dissimilar welding of the modified 9Cr-1Mo steel, J. Mater. Sci. Lett. 20 (2001) 1429-1432, https://doi.org/10.1023/A:1011616232396.
  14. G. Dak, C. Pandey, A critical review on dissimilar welds joint between martensitic and austenitic steel for power plant application, J. Manuf. Process. 58 (2020) 377-406, https://doi.org/10.1016/j.jmapro.2020.08.019.
  15. G. Dak, C. Pandey, Experimental investigation on microstructure, mechanical properties, and residual stresses of dissimilar welded joint of martensitic P92 and AISI 304L austenitic stainless steel, Int. J. Pres. Ves. Pip. 194 (2021) 104536, https://doi.org/10.1016/j.ijpvp.2021.104536.
  16. Pancikiewicz K, Swierczynska A, Swierczynska S, Hucko PH, Tumidajewicz M. Materials laser dissimilar welding of AISI 430F and AISI 304 stainless steels n.d. https://doi.org/10.3390/ma13204540.
  17. J. Akram, P.R. Kalvala, P. Chalavadi, M. Misra, Dissimilar metal weld joints of P91/Ni alloy: microstructural characterization of HAZ of P91 and stress analysis at the weld interfaces, J. Mater. Eng. Perform. 27 (2018) 4115-4128, https://doi.org/10.1007/s11665-018-3502-8.
  18. J. Niagaj, Use of A-TIG method for welding of titanium, nickel, their alloys and austenitic steels, Weld. Int. 20 (2006) 516-520, https://doi.org/10.1533/wint.2006.3621.
  19. J. Tomkow, K. Sobota, S. Krajewski, Influence of tack welds distribution and welding sequence on the angular distortion of tig welded joint, Facta Univ. - Ser. Mech. Eng. 18 (2020), https://doi.org/10.22190/FUME200520044T.
  20. P. Sharma, D.K. Dwivedi, Comparative study of activated flux-GTAW and multipass-GTAW dissimilar P92 steel-304H ASS joints, Mater. Manuf. Process. 34 (2019) 1195-1204, https://doi.org/10.1080/10426914.2019.1605175.
  21. K. Song, Z. Wang, S. Hu, S. Zhang, E. Liang, Welding current influences on Inconel 625/X65 cladding interface, Mater. Manuf. Process. 33 (2018) 770-777, https://doi.org/10.1080/10426914.2017.1364851.
  22. J. Niagaj, The use of activating fluxes for the welding of high-alloy steels by A-TIG method, Weld. Int. 17 (2003) 257-261, https://doi.org/10.1533/wint.2003.3110.
  23. R.S. Vidyarthy, D.K. Dwivedi, Activating flux tungsten inert gas welding for enhanced weld penetration, J. Manuf. Process. 22 (2016) 211-228. https://doi.org/10.1016/j.jmapro.2016.03.012
  24. F. Delany, W. Lucas, W. Thomas, D. Howse, D. Abson, S. Mulligan, et al., Advanced joining processes for repair in nuclear power plants, in: Paper presented at 2005 International Forum on Welding Technologies in Energy Engineering September 21 - 23 Shanghai, China, 2005.
  25. T. Sakthivel, M. Vasudevan, K. Laha, P. Parameswaran, K.S.S. Chandravathi, M.D.D. Mathew, et al., Comparison of creep rupture behaviour of type 316L(N) austenitic stainless steel joints welded by TIG and activated TIG welding processes, Mater. Sci. Eng. A. 528 (2011) 6971-6980, https://doi.org/10.1016/j.msea.2011.05.052.
  26. P. Vasantharaja, M. Vasudevan, Studies on A-TIG welding of low activation ferritic/martensitic (LAFM) steel, J. Nucl. Mater. 421 (2012) 117-123, https://doi.org/10.1016/j.jnucmat.2011.11.062.
  27. Machining M, Joining A, Manufacturing S. Advanced Manufacturing Technologies. n.d.
  28. P. Carlone, A. Astarita, Dissimilar metal welding, Metals 9 (2019) 10-13, https://doi.org/10.3390/met9111206.
  29. K. Yagi, F. Abe, M.K. Banerjee, Creep-Resistant Steels, Ref. Modul. Mater. Sci. Mater. Eng. (2018), https://doi.org/10.1016/b978-0-12-803581-8.11514-0. Elsevier.
  30. Yang J, Wang L. Metals optimizing the local strength mismatch of a dissimilar metal welded joint in a nuclear power plant n.d. https://doi.org/10.3390/met8070494.
  31. H. Hanninen, P. Aaltonen, A. Brederholm, U. Ehrnsten, H. Gripenberg, A. Toivonen, et al., Dissimilar Metal Weld Joints and Their Performance in Nuclear Power Plant and Oil Refinery Conditions, VTT Tied - Valt Tek Tutkimusk, 2006, pp. 3-208.
  32. D.J. Abson, J.S. Rothwell, Review of type IV cracking of weldments in 9 - 12 % Cr creep strength enhanced ferritic steels, Int. Mater. Rev. 58 (2013) 437-473, https://doi.org/10.1179/1743280412Y.0000000016.
  33. N.F. Farman, S. ALasadi, Z.A. Abdul Redha, A review of advances in pressurizer response research for pressurized water reactor systems, Int. J. Simulat. Syst. Sci. Technol. 19 (2) (2018), https://doi.org/10.5013/IJSSST.a.19.02.03.
  34. J.N. DuPont, Microstructural evolution and high temperature failure of ferritic to austenitic dissimilar welds, Int. Mater. Rev. 57 (2012) 208-234, https://doi.org/10.1179/1743280412Y.0000000006.
  35. C. Sudha, A.L.E. Terrance, S.K. Albert, M. Vijayalakshmi, Systematic study of formation of soft and hard zones in the dissimilar weldments of Cr-Mo steels, J. Nucl. Mater. 302 (2002) 193-205, https://doi.org/10.1016/S0022-3115(02)00777-8.
  36. J.P. Galler, J.N. Dupont, J.A. Siefert, Influence of alloy type, peak temperature and constraint on residual stress evolution in Satoh test, Sci. Technol. Weld. Join. 21 (2016) 106-113, https://doi.org/10.1179/1362171815Y.0000000071.
  37. H. Vashishtha, R.V. Taiwade, S. Sharma, A.P. Patil, Effect of welding processes on microstructural and mechanical properties of dissimilar weldments between conventional austenitic and high nitrogen austenitic stainless steels, J. Manuf. Process. 25 (2017) 49-59, https://doi.org/10.1016/j.jmapro.2016.10.008.
  38. K.E. Dawson, Dissimilar Metal Welds, Univeristy of Liverpool, 2012.
  39. K.E. Dawson, G.J. Tatlock, The stability of fine, sub-grain microstructures within carbon depleted regions of dis- similar metal, ferritic, creep resistant welds, Proc ASME (2011). Press Vessel Pip Div Conf Pap PVP2011-57868 n.d.
  40. P. Mayr, S. Mitsche, H. Cerjak, et al., The impact of weld metal creep strength on the overall creep strength of 9% Cr steel weldments, J. Eng. Mater. Technol. 133 (2) (2011), 7:article number 021011.
  41. Well-Engineered Weld Repair of Grade 91 Steel: Results for ThroughThickness Repair Welds, EPRI, Palo Alto, 2014.
  42. J.A. Siefert, J.D. Parker, Well-Engineered weld repair of grade 91 steel, in: Proc to EPRI Int Conf Weld Repair Technol Power Plants, Naples, FL, 2013.
  43. G. Rogalski, A. Swierczynska, M. Landowski, D. Fydrych, Mechanical and microstructural characterization of tig welded dissimilar joints between 304l austenitic stainless steel and incoloy 800ht nickel alloy, Metals 10 (2020) 559, https://doi.org/10.3390/met10050559.
  44. M.W. Kuper, B.T. Alexandrov, Retention of delta ferrite in the heat-affected zone of grade 91 steel dissimilar metal welds, Metall. Mater. Trans. A. Phys. Metall. Mater. Sci. 50 (2019) 2732-2747, https://doi.org/10.1007/s11661-019-05182-4.
  45. C. Pandey, M.M. Mahapatra, P. Kumar, N. Saini, J.G. Thakre, R.S. Vidyarthy, et al., A brief study on d-ferrite evolution in dissimilar P91 and P92 steel weld joint and their effect on mechanical properties, Arch. Civ. Mech. Eng. 18 (2018) 713-722, https://doi.org/10.1016/j.acme.2017.12.002.
  46. M.A. Martorano, C.F. Tavares, A.F. Padilha, Predicting delta ferrite content in stainless steel castings, ISIJ Int. 52 (2012) 1054-1065. https://doi.org/10.2355/isijinternational.52.1054
  47. P. Wang, S.P. Lu, N.M. Xiao, D.Z. Li, Y.Y. Li, Effect of delta ferrite on impact properties of low carbon 13Cr-4Ni martensitic stainless steel, Mater. Sci. Eng. A. 527 (2010) 3210-3216, https://doi.org/10.1016/j.msea.2010.01.085.
  48. P. Mayr, T.A. Palmer, J.W. Elmer, E.D. Specht, S.M. Allen, formation of delta ferrite in 9 Wt pct Cr steel investigated by in-situ X-ray diffraction using synchrotron radiation, Metall. Mater. Trans. 41 (2010) 2462-2465, https://doi.org/10.1007/s11661-010-0371-7.
  49. T. Soysal, S. Kou, D. Tat, T. Pasang, Macrosegregation in dissimilar-metal fusion welding, Acta Mater. 110 (2016) 149-160, https://doi.org/10.1016/j.actamat.2016.03.004.
  50. T.S. Chern, K.H. Tseng, H.L. Tsai, Study of the characteristics of duplex stainless steel activated tungsten inert gas welds, Mater. Des. 32 (2011) 255-263, https://doi.org/10.1016/j.matdes.2010.05.056.
  51. Y.L. Xu, Z.B. Dong, Y.H. Wei, C.L. Yang, Marangoni convection and weld shape variation in A-TIG welding process, Theor. Appl. Fract. Mech. 48 (2007) 178-186, https://doi.org/10.1016/j.tafmec.2007.05.004.
  52. K.C. Ganesh, K.R. Balasubramanian, M. Vasudevan, P. Vasantharaja, N. Chandrasekhar, Effect of multipass TIG and activated TIG welding process on the thermo-mechanical behavior of 316LN stainless steel weld joints, Metall. Mater. Trans. B 47 (2016) 1347-1362, https://doi.org/10.1007/s11663-016-0600-6.
  53. J. Sivakumar, M. Vasudevan, N.N. Korra, Systematic welding process parameter optimization in activated tungsten inert gas (A-TIG) welding of Inconel 625, Trans. Indian Inst. Met. 73 (2020) 1-15, https://doi.org/10.1007/s12666-020-01876-1.
  54. N.P. Patel, V.J. Badheka, J.J. Vora, G.H. Upadhyay, Effect of oxide fluxes in activated TIG welding of stainless steel 316LN to low activation ferritic/martensitic steel (LAFM) dissimilar combination, Trans. Indian Inst. Met. 72 (2019) 2753-2761, https://doi.org/10.1007/s12666-019-01752-7.
  55. S. Chitharthan, S. Divakar, S. Thalaieswaran, TIG and A-TIG welding for Inconel 718 super alloy - a review, Int. J. Adv. Sci. Technol. 29 (2020) 2631-2638.
  56. P.J. Modenesi, E.R. Apolinario, I.M. Pereira, TIG welding with singlecomponent fluxes, J. Mater. Process. Technol. 99 (2000) 260-265. https://doi.org/10.1016/S0924-0136(99)00435-5
  57. G.M. Chai, Y.F. Zhu, Spectra and thermal analysis of the arc in activating flux plasma arc welding, Guang Pu Xue Yu Guang Pu Fen Xi/Spectroscopy Spectr. Anal. 30 (2010) 1141-1145, https://doi.org/10.3964/j.issn.1000-0593(2010)04-1141-05.
  58. M. Kuo, Z. Sun, D. Pan, Laser welding with activating flux, Sci. Technol. Weld. Join. 6 (2001) 17-22, https://doi.org/10.1179/136217101101538497.
  59. H.-Y. Huang, Effects of activating flux on the welded joint characteristics in gas metal arc welding, Mater. Des. 31 (2010) 2488-2495, https://doi.org/10.1016/j.matdes.2009.11.043.
  60. D. Patel, S. Jani, Techniques to weld similar and dissimilar materials by ATIG welding - an overview, Mater. Manuf. Process. 36 (2021) 1-16, https://doi.org/10.1080/10426914.2020.1802040.
  61. D.S. Howse, W. Lucas, Investigation into arc constriction by active fluxes for tungsten inert gas welding, Sci. Technol. Weld. Join. 5 (2000) 189-193, https://doi.org/10.1179/136217100101538191.
  62. J. Thomson, XLII. On certain curious motions observable at the surfaces of wine and other alcoholic liquors, London, Edinburgh, Dublin Philos. Mag. J. Sci. 10 (1855) 330-333, https://doi.org/10.1080/14786445508641982.
  63. A. Berthier, P. Paillard, M. Carin, F. Valensi, S. Pellerin, TIG and A-TIG welding experimental investigations and comparison to simulation, Sci. Technol. Weld. Join. 17 (2012) 609-615, https://doi.org/10.1179/1362171812Y.0000000024.
  64. J.S. Jayakrishnan, C.P. Chakravarthy, Flux bounded tungsten inert gas welding for enhanced weld performanceda review, J. Manuf. Process. 28 (2017) 116-130, https://doi.org/10.1016/j.jmapro.2017.05.023.
  65. D. Pandya, A. Badgujar, N. Ghetiya, A novel perception toward welding of stainless steel by activated TIG welding: a review, Mater. Manuf. Process. 36 (2021) 877-903, https://doi.org/10.1080/10426914.2020.1854467.
  66. S. Tathgir, A. Bhattacharya, T.K. Bera, Influence of current and shielding gas in TiO2 flux activated tig welding on different graded steels, Mater. Manuf. Process. 30 (2015) 1115-1123, https://doi.org/10.1080/10426914.2014.973591.
  67. W. Wu, J. Xue, Z. Zhang, P. Yao, Comparative study of 316L depositions by two welding current processes, Mater. Manuf. Process. 34 (2019) 1502-1508, https://doi.org/10.1080/10426914.2019.1643473.
  68. X. Chen, M. Luo, R. Hu, R. Li, L. Liang, S. Pang, Thermo-electromagnetic effect on weld microstructure in magnetically assisted laser welding of austenite steel, J. Manuf. Process. 41 (2019) 111-118, https://doi.org/10.1016/j.jmapro.2019.03.033.
  69. D. Pandya, A. Badgujar, N. Ghetiya, A novel perception toward welding of stainless steel by activated TIG welding: a review, Mater. Manuf. Process. (2020) 1-27, https://doi.org/10.1080/10426914.2020.1854467, 00.
  70. K.D. Ramkumar, V. Varma, M. Prasad, N.D. Rajan, N.S. Shanmugam, Effect of activated flux on penetration depth, microstructure and mechanical properties of Ti-6Al-4V TIG welds, J. Mater. Process. Technol. 261 (2018) 233-241, https://doi.org/10.1016/J.JMATPROTEC.2018.06.024.
  71. V. Maduraimuthu, M. Vasudevan, V. Muthupandi, A.K. Bhaduri, Effect of activated flux on the microstructure , mechanical properties , and residual stresses of modified 9Cr-1Mo steel weld joints, Metall. Mater. Trans. B 43 (2012) 123-132, https://doi.org/10.1007/s11663-011-9568-4.
  72. Q ming Li, X hong Wang, Z. da Zou, J. Wu, Effect of activating flux on arc shape and arc voltage in tungsten inert gas welding, Trans. Nonferrous. Met. Soc. China 17 (2007) 486-490, https://doi.org/10.1016/S1003-6326(07)60120-4.
  73. Y. Zhao, H. Zhou, Y. Shi, The study of surface active element on weld pool development in A-TIG welding, Model. Simulat. Mater. Sci. Eng. 14 (2006) 331. https://doi.org/10.1088/0965-0393/14/3/001
  74. S. Jaypuria, T.R. Mahapatra, S. Sahoo, O. Jaypuria, Effect of arc length trim and adaptive pulsed-MIG process parameters on bead profile of stainless steel with synergic power source, Mater. Today Proc. 26 (2020) 787-795, https://doi.org/10.1016/j.matpr.2020.01.027.
  75. A. Bhattacharya, Revisiting arc, metal flow behavior in flux activated tungsten inert gas welding, Mater. Manuf. Process. 31 (2016) 343-351, https://doi.org/10.1080/10426914.2015.1070421.
  76. K.-H. Tseng, C.-Y. Hsu, Performance of activated TIG process in austenitic stainless steel welds, J. Mater. Process. Technol. 211 (2011) 503-512, https://doi.org/10.1016/j.jmatprotec.2010.11.003.
  77. D. Fan, R. Zhang, Y. Gu, M. Ushio, Effect of flux on A-TIG welding of mild steels (physics, processes, instruments & measurements), Trans. JWRI 30 (2001) 35-40.
  78. Filler metals bestseller for joining applications, Bohler Weld (2014).
  79. S.P. Lu, M.P. Qin, W.C. Dong, Highly efficient TIG welding of Cr13Ni5Mo martensitic stainless steel, J. Mater. Process. Technol. 213 (2013) 229-237, https://doi.org/10.1016/j.jmatprotec.2012.09.025.
  80. C. Dong, Y. Zhu, G. Chai, Preliminary study on the mechanism of arc welding with the activating flux, Aeronaut Manuf. Technol. Suppl. 6 (2004) 271-278.
  81. I. Garasic, Z. Kozuh, M. Jurica, Influence of TIG shielding gas composition on weld geometry and corrosion properties of titanium weld joints, in: 2019 4th Int. Conf. Smart Sustain. Technol, IEEE, 2019, pp. 1-5, https://doi.org/10.23919/SpliTech.2019.8783175.
  82. H.-Y. Huang, Argon-hydrogen shielding gas mixtures for activating fluxassisted gas tungsten arc welding, Metall. Mater. Trans. 41 (2010) 2829-2835, https://doi.org/10.1007/s11661-010-0361-9.
  83. J. Gorka, M. Przybyla, M. Szmul, A. Chudzio, D. Ladak, Orbital TIG welding of titanium tubes with perforated bottom made of titanium-clad steel, Adv. Mater. Sci. 19 (2019) 55-64. https://doi.org/10.2478/adms-2019-0017
  84. H.-Y. Huang, Effects of shielding gas composition and activating flux on GTAW weldments, Mater. Des. 30 (2009) 2404-2409, https://doi.org/10.1016/j.matdes.2008.10.024.
  85. M. Kurtulmus, Activated flux TIG welding of austenitic stainless steels, Emerg. Mater. Res. 9 (2020) 1041-1055, https://doi.org/10.1680/jemmr.18.00092.
  86. A. Sambherao, Use of activated flux for increasing penetration in austenitic stainless steel while performing GTAW, Int. J. Adv. Res. 9001 (2013).
  87. G. Chandrasekar, C. Kailasanathan, M. Vasundara, Investigation on unpeened and laser shock peened dissimilar weldments of Inconel 600 and AISI 316L fabricated using activated-TIG welding technique, J. Manuf. Process. 35 (2018) 466-478, https://doi.org/10.1016/j.jmapro.2018.09.004.
  88. S.P. Sridhar, S.A. Kumar, P. Sathiya, A study on the effect of different activating flux on A-TIG welding process of Incoloy 800H, Adv. Mater. Sci. 16 (2016) 26. https://doi.org/10.1515/adms-2016-0014
  89. P.J. Modenesi, P. Colen Neto, E. Roberto Apolinario, K. Batista Dias, Effect of flux density and the presence of additives in ATIG welding of austenitic stainless steel, Weld. Int. 29 (2015) 425-432, https://doi.org/10.1080/09507116.2014.932982.
  90. S. Leconte, P. Paillard, J. Saindrenan, Effect of fluxes containing oxides on tungsten inert gas welding process, Sci. Technol. Weld. Join. 11 (2006) 43-47. https://doi.org/10.1179/174329306X77047
  91. M. Vasudevan, Effect of A-TIG welding process on the weld attributes of type 304LN and 316LN stainless steels, J. Mater. Eng. Perform. 26 (2017) 1325-1336, https://doi.org/10.1007/s11665-017-2517-x.
  92. S.R. Singh, P. Khanna, A-TIG (activated flux tungsten inert gas) welding: - a review, Mater. Today Proc. 44 (2021) 808-820, https://doi.org/10.1016/j.matpr.2020.10.712.
  93. S. Jayakrishnan, P. Chakravarthy, A. Muhammed Rijas, Effect of flux gap and particle size on the depth of penetration in FBTIG welding of aluminium, Trans. Indian Inst. Met. 70 (2017) 1329-1335, https://doi.org/10.1007/s12666-016-0929-1.
  94. P. Sharma, D.K. Dwivedi, Study on Flux assisted-Tungsten inert gas welding of bimetallic P92 martensitic steel-304H austenitic stainless steel using SiO2eTiO2 binary flux, Int. J. Pres. Ves. Pip. 192 (2021) 104423, https://doi.org/10.1016/j.ijpvp.2021.104423.
  95. K.H. Dhandha, V.J. Badheka, Effect of activating fluxes on weld bead morphology of P91 steel bead-on-plate welds by flux assisted tungsten inert gas welding process, J. Manuf. Process. 17 (2015) 48-57, https://doi.org/10.1016/j.jmapro.2014.10.004.
  96. G. Ruckert, N. Perry, S. Sire, S. Marya, Enhanced weld penetrations in GTA welding with activating fluxes case studies: plain carbon & stainless steels, titanium and aluminum, Mater. Sci. Forum 783-786 (2014), 2804-9, https://doi.org/10.4028/www.scientific.net/msf.783-786.2804.
  97. C. Li, Y. Dai, Y. Gu, Y. Shi, Spectroscopic analysis of the arc plasma during activating flux tungsten inert gas welding process, J. Manuf. Process. 75 (2022) 919-927, https://doi.org/10.1016/j.jmapro.2022.01.058.
  98. J.J. Vora, V.J. Badheka, Experimental investigation on mechanism and weld morphology of activated TIG welded bead-on-plate weldments of reduced activation ferritic/martensitic steel using oxide fluxes, J. Manuf. Process. 20 (2015) 224-233, https://doi.org/10.1016/j.jmapro.2015.07.006.
  99. S.P. Sridhar, S.A. Kumar, P. Sathiya, A-Tig welding process of incoloy 800H. https://doi.org/10.1515/adms, 2016.
  100. J. Wang, K. Kusumoto, K. Nezu, Investigation into micro-tungsten inert gas arc behaviour and weld formation, Sci. Technol. Weld. Join. 9 (2004) 90-94, https://doi.org/10.1179/136217104225017198.
  101. S. Nagaraju, P. Vasantharaja, N. Chandrasekhar, M. Vasudevan, T. Jayakumar, Optimization of A-TIG welding process parameters for 9Cr-1Mo steel using response surface methodology and genetic algorithm, Int. Weld. Congr. 2014 (2014) 457-463.
  102. J. Hilkes, V. Gross, Welding CrMo steels for power generation and petrochemical applications-past, present and future, Bull. Inst. Weld 57 (2013) 11-22.
  103. A. Rodrigues, A. Loureiro, A. Castanhola Batista, Effect of activating fluxes on bead geometry and on microstructure of a-TIG welds, Weld. Res. Abroad 52 (2006) 48-58.
  104. C. Yang, S. Lin, F.Y. Liu, L. Wu, Q.T. Zhang, Research on the mechanism of penetration increase by flux in A-TIG welding, J. Mater. Sci. Technol. 19 (2003) 225-227.
  105. A. Kulkarni, D.K. Dwivedi, M. Vasudevan, Effect of oxide fluxes on activated TIG welding of AISI 316L austenitic stainless steel, Mater. Today Proc. 18 (2019) 4695-4702, https://doi.org/10.1016/j.matpr.2019.07.455.
  106. S.S. Tigga, D.K. Verma, K. Panneerselvam, Microstructure & mechanical properties of dissimilar material joints between T91 martensitic & S304H austenitic steels using different filler wires, Mater. Today Proc. 46 (19) (2020), https://doi.org/10.1016/j.matpr.2020.03.055.
  107. A. Zielinski, M. Miczka, B. Boryczko, M. Sroka, Forecasting in the presence of microstructural changes for the case of P91 steel after long-term ageing, Arch. Civ. Mech. Eng. 16 (2016) 813-824, https://doi.org/10.1016/J.ACME.2016.04.010.
  108. B.X. Liu, S. Wang, W. Fang, F.X. Yin, C.X. Chen, Meso and microscale clad interface characteristics of hot-rolled stainless steel clad plate, Mater. Char. 148 (2019) 17-25, https://doi.org/10.1016/j.matchar.2018.12.008.
  109. S. Wang, J. Ding, H. Ming, Z. Zhang, J. Wang, Characterization of Low Alloy Ferritic Steel-Ni Base Alloy Dissimilar Metal Weld Interface by SPM Techniques, SEM/EDS, TEM/EDS and SVET, 2014.
  110. C. Jang, J. Lee, J. Sung Kim, T. Eun Jin, Mechanical property variation within Inconel 82/182 dissimilar metal weld between low alloy steel and 316 stainless steel, Int. J. Pres. Ves. Pip. 85 (2008) 635-646, https://doi.org/10.1016/j.ijpvp.2007.08.004.
  111. M. Pouranvari, M. Khorramifar, S.P.H. Marashi, Ferritic-austenitic stainless steels dissimilar resistance spot welds: metallurgical and failure characteristics, Sci. Technol. Weld. Join. 21 (2016) 438-445, https://doi.org/10.1080/13621718.2015.1124491.
  112. K.H. Lo, C.H. Shek, J.K.L. Lai, Recent developments in stainless steels, Mater. Sci. Eng. R Rep. 65 (2009) 39-104, https://doi.org/10.1016/j.mser.2009.03.001.
  113. C. Pandey, M.M. Mahapatra, Effect of groove design and post-weld heat treatment on microstructure and mechanical properties of P91 steel weld, J. Mater. Eng. Perform. 25 (2016) 2761-2775, https://doi.org/10.1007/s11665-016-2127-z.
  114. S.G. Nayee, V.J. Badheka, Effect of oxide-based fluxes on mechanical and metallurgical properties of dissimilar activating flux assisted-tungsten inert gas welds, J. Manuf. Process. 16 (2014) 137-143, https://doi.org/10.1016/j.jmapro.2013.11.001.
  115. B. Silwal, L. Li, A. Deceuster, B. Griffiths, Effect of postweld heat treatment on the toughness of heat-affected zone for Grade 91 steel, Weld. J. 92 (2013) 80s-87s.
  116. C. Pandey, M. Mohan Mahapatra, P. Kumar, J.G. Thakre, N. Saini, Role of evolving microstructure on the mechanical behaviour of P92 steel welded joint in as-welded and post weld heat treated state, J. Mater. Process. Technol. 263 (2019) 241-255, https://doi.org/10.1016/j.jmatprotec.2018.08.032.
  117. S. Sirohi, P.K. Taraphdar, G. Dak, C. Pandey, S.K. Sharma, A. Goyal, Study on evaluation of through-thickness residual stresses and microstructuremechanical property relation for dissimilar welded joint of modified 9Cre1Mo and SS304H steel, Int. J. Pres. Ves. Pip. 194 (2021) 104557, https://doi.org/10.1016/j.ijpvp.2021.104557.
  118. R. Duhan, S. Choudhary, Effect of activated flux on properties of ss 304 using tig welding, Int. J. Eng. 28 (2015) 290-295.
  119. V. Arunkumar, M. Vasudevan, V. Maduraimuthu, V. Muthupandi, Effect of activated flux on the microstructure and mechanical properties of 9Cr-1Mo steel weld joint, Mater. Manuf. Process. 27 (2012) 1171-1177, https://doi.org/10.1080/10426914.2011.610212.
  120. Shyu SW, Huang HY, Tseng KH, Chou CP. Study of the performance of stainless steel A-TIG welds. J. Mater. Eng. Perform. 2007 172 2007;17: 193-201. https://doi.org/10.1007/S11665-007-9139-7.
  121. S. Sirohi, C. Pandey, A. Goyal, Role of the Ni-based filler (IN625) and heattreatment on the mechanical performance of the GTA welded dissimilar joint of P91 and SS304H steel, J. Manuf. Process. 65 (2021) 174-189, https://doi.org/10.1016/j.jmapro.2021.03.029.
  122. A. Kumar, C. Pandey, Autogenous laser - welded dissimilar joint of ferritic/martensitic P92 steel and Inconel 617 alloy : mechanism , microstructure , and mechanical properties, Arch. Civ. Mech. Eng. 6 (2022), https://doi.org/10.1007/s43452-021-00365-6.
  123. C. Pandey, M.M. Mahapatra, P. Kumar, N. Saini, Homogenization of P91 weldments using varying normalizing and tempering treatment, Mater. Sci. Eng. A. 710 (2018) 86-101, https://doi.org/10.1016/j.msea.2017.10.086.
  124. J.G. Thakare, C. Pandey, M.M. Mahapatra, R.S. Mulik, An assessment for mechanical and microstructure behavior of dissimilar material welded joint between nuclear grade martensitic P91 and austenitic SS304 L steel, J. Manuf. Process. 48 (2019) 249-259, https://doi.org/10.1016/j.jmapro.2019.10.002.
  125. C. Pandey, M.M. Mahapatra, P. Kumar, N. Saini, Some studies on P91 steel and their weldments, J. Alloys Compd. 743 (2018) 332-364, https://doi.org/10.1016/j.jallcom.2018.01.120.
  126. A. Kulkarni, D.K. Dwivedi, M. Vasudevan, Study of mechanism, microstructure and mechanical properties of activated flux TIG welded P91 Steel-P22 steel dissimilar metal joint, Mater. Sci. Eng. A. 731 (2018) 309-323, https://doi.org/10.1016/j.msea.2018.06.054.
  127. P.K. Chaurasia, C. Pandey, A. Giri, N. Saini, M.M. Mahapatra, A comparative study of residual stress and mechanical properties for fsw and tig weld on structural steel, Arch. Metall. Mater. 63 (2018) 1019-1029, https://doi.org/10.24425/122437.
  128. A. Kulkarni, D.K. Dwivedi, M. Vasudevan, Dissimilar metal welding of P91 steel-AISI 316L SS with Incoloy 800 and Inconel 600 interlayers by using activated TIG welding process and its effect on the microstructure and mechanical properties, J. Mater. Process. Technol. 274 (2019) 116280, https://doi.org/10.1016/j.jmatprotec.2019.116280.
  129. P. Sharma, D.K. Dwivedi, Wire-feed assisted A-TIG welding of dissimilar steels, Arch. Civ. Mech. Eng. 21 (2021) 1-20, https://doi.org/10.1007/s43452-021-00235-1.
  130. R.S. Vidyarthy, D.K. Dwivedi, A comparative study on creep behavior of AISI 409 ferritic stainless steel in as-received and as-welded condition (A-TIG and M-TIG), Mater. Today Proc. 5 (2018) 17097-17106, https://doi.org/10.1016/j.matpr.2018.04.117.
  131. R.S. Vidyarthy, D.K. Dwivedi, Microstructural and mechanical properties assessment of the P91 A-TIG weld joints, J. Manuf. Process. 31 (2018) 523-535, https://doi.org/10.1016/j.jmapro.2017.12.012.
  132. A. Kulkarni, D.K. Dwivedi, M. Vasudevan, Microstructure and mechanical properties of A-TIG welded AISI 316L SS-Alloy 800 dissimilar metal joint, Mater. Sci. Eng. A. 790 (2020) 139685, https://doi.org/10.1016/j.msea.2020.139685.
  133. J. Brear, A. Fleming, Prediction of P91 Life under Plant Operating Conditions, 2004.
  134. J.A. Francis, W. Mazur, H.K.D.H. Bhadeshia, Type IV cracking in ferritic power plant steels, Mater. Sci. Technol. 22 (2006) 1387-1395, https://doi.org/10.1179/174328406X148778.
  135. J. H, Microstructure and long-term creep properties of 9-12%Cr steels, Proc. ECCC Creep. Conf. Creep. Fract. High. Temp. Components - Des. Life Assess Issues (2005) 20-30.
  136. M. Igarashi, M. Yoshizawa, A. Iseda, Long-tem creep strength degradation in T122/P122 steels for USC power plants, Proc. 8th Liege Conf, Liege, Belgium, Res. Cent. Julich 53 (2006) 1095-1104.
  137. J. H, Metallography and alloy design in the COST 536 action, Proc. 8th Liege Conf, Liege, Belgium, Res. Cent. Julich 53 (2006) 917-930.
  138. D.J. Abson, J.S. Rothwell, B.J. Cane, Advances IN welded creep resistant 9-12% CR steels, in: 5th Int Conf Adv Mater Technol Foss Power, vol. 2, 2007.
  139. S.K. Albert, M. Tabuchi, H. Hongo, T. Watanabe, K. Kubo, M. Matsui, Effect of welding process and groove angle on type IV cracking behaviour of weld joints of a ferritic steel, Sci. Technol. Weld. Join. 10 (2005) 149-157, https://doi.org/10.1179/174329305X36034.
  140. R.S. Vidyarthy, D.K. Dwivedi, M. Vasudevan, Influence of M-TIG and A-TIG welding process on microstructure and mechanical behavior of 409 ferritic stainless steel, J. Mater. Eng. Perform. 26 (2017) 1391-1403, https://doi.org/10.1007/s11665-017-2538-5.
  141. J.W. Baek, S.W. Nam, B.O. Kong Shr, No Title, Key Eng. Mater. 463 (2005) 297-300.
  142. G. Sasikala, M.D. Mathew, K. BhanuSankaraRao, S.L. Mannan, Etal. . JNuclMater 273 (1999) 257-264.
  143. M.D. Mathew, S. Latha, K.B.S. Rao, An assessment of creep strength reduction factors for 316L(N) SS welds, Mater. Sci. Eng. A. 456 (2007) 28-34, https://doi.org/10.1016/j.msea.2006.11.087.
  144. C. Pandey, M.M. Mahapatra, P. Kumar, N. Saini, Dissimilar joining of CSEF steels using autogenous tungsten-inert gas welding and gas tungsten arc welding and their effect on δ-ferrite evolution and mechanical properties, J. Manuf. Process. 31 (2018) 247-259, https://doi.org/10.1016/j.jmapro.2017.11.020.
  145. D. Deng, H. Murakawa, Numerical simulation of temperature field and residual stress in multi-pass welds in stainless steel pipe and comparison with experimental measurements, Comput. Mater. Sci. 37 (2006) 269-277, https://doi.org/10.1016/j.commatsci.2005.07.007.