과제정보
This work was supported by a National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIT) (NRF-2017M2B2B1072806). This work was also supported by the "Human Resources Program in Energy Technology" of the Korea Institute of Energy Technology Evaluation and Planning (KETEP), granted financial resources from the Ministry of Trade, Industry Energy, Republic of Korea (No. 20214000000070).
참고문헌
- Z. Dal, 17 - thorium molten salt reactor nuclear energy system (tmsr), in: T.J. Dolan (Ed.), Molten Salt Reactors and Thorium Energy, 1st, Woodhead Publishing, 2017, pp. 531-540.
- T. Burehell, 4.10 - radiation effects in graphite, in: R.J. Konings (Ed.), Comprehensive Nuclear Materials, Elsevier, Oxford, 2021, pp. 299-324.
- R. Taylor, B. Kelly, K. Gilchrist, The thermal conductivity of fast neutron irradiated graphite, J. Phys. Chem. Solid. 30 (9) (1969) 2251-2267. https://doi.org/10.1016/0022-3697(69)90152-8
- A. Perks, J. Simmons, Dimensional changes and radiation creep of graphite at very high neutron doses, Carbon 4 (1) (1966) 85-98. https://doi.org/10.1016/0008-6223(66)90013-3
- Irradiation Damage in Graphite Due to Fast Neutrons in Fission and Fusion Systems, No. 1154 in TECDOC Series, INTERNATIONAL ATOMIC ENERGY AGENCY, Vienna, 2000.
- G. Haag, Properties of ATR-2E Graphite and Property Changes Due to Fast Neutron Irradiation, 2005.
- A.A. Campbell, Y. Katoh, Report on Effects of Irradiation on Material Ig-110, prepared for toyo tanso co, ltd, 2017.
- Z. Zhou, W. Bouwman, H. Schut, T. van Staveren, M. Heijna, C. Pappas, Influence of neutron irradiation on the microstructure of nuclear graphite: an X-ray diffraction study, J. Nucl. Mater. 487 (2017) 323-330. https://doi.org/10.1016/j.jnucmat.2017.02.004
- R. McElroy, T. Williams, F. Boydon, B. Hemsworth, Low temperature embrittlement of LWR RPV support structures, Int. J. Pres. Ves. Pip. 54 (1993) 171-211. https://doi.org/10.1016/0308-0161(93)90133-E
- M.-H. Kim, Utilization of AGN-201Kfor education and research in Korea, Tech. Rep. (2011).
- Management of Research Reactor Ageing, No. 792 in TECDOC Series, INTERNATIONAL ATOMIC ENERGY AGENCY, Vienna, 1995.
- G. Was, R. Averback, Radiation Damage Using Ion Beams 1, Comprehensive Nuclear Materials, 2012, pp. 195-221.
- T.C. O'Connor, J. Andzelm, M.O. Robbins, Airebo-m: a reactive model for hydrocarbons at extreme pressures, J. Chem. Phys. 142 (2) (2015), 024903. https://doi.org/10.1063/1.4905549
- A. Gulans, A.V. Krasheninnikov, M.J. Puska, R.M. Nieminen, Bound and free self-interstitial defects in graphite and bilayer graphene: a computational study, Phys. Rev. B 84 (2011), 024114. https://doi.org/10.1103/physrevb.84.024114
- J. Graser, S.K. Kauwe, T.D. Sparks, Machine learning and energy minimization approaches for crystal structure predictions: a review and new horizons, Chem. Mater. 30 (11) (2018) 3601-3612. https://doi.org/10.1021/acs.chemmater.7b05304
- J. Schmidt, M.R.G. Marques, S. Botti, M.A. L Marques, Recent advances and applications of machine learning in solid-state materials science, npj Computational Materials 5 (1) (2019) 83. https://doi.org/10.1038/s41524-019-0221-0
- J. Behler, M. Parrinello, Generalized neural-network representation of highdimensional potential energy surfaces, Phys. Rev. Lett. 98 (2007) 146401. https://doi.org/10.1103/PhysRevLett.98.146401
- M. Babar, H.L. Parks, G. Houchins, V. Viswanathan, An accurate machine learning calculator for the lithium-graphite system, J. Phys.: Energy 3 (1) (2020), 014005. https://doi.org/10.1088/2515-7655/abc96f
- P. Rowe, V.L. Deringer, P. Gasparotto, G. Csanyi, A. Michaelides, An accurate and transferable machine learning potential for carbon, J. Chem. Phys. 153 (3) (2020), 034702. https://doi.org/10.1063/5.0005084
- G.H. Kinchin, R.S. Pease, The displacement of atoms in solids by radiation, Rep. Prog. Phys. 18 (1) (1955) 1-51. https://doi.org/10.1088/0034-4885/18/1/301
- Tokio Fukahori, Yosuke Iwamoto, A Calculation Method of PKA, KERMA and Dpa from Evaluated Nuclear Data with an Effective Single-Particle Emission Approximation (ESPEA) and Introduction of Event Generator Mode in Phits Code, 2012.
- S. Signetti, K. Kang, N.M. Pugno, S. Ryu, Atomistic modelling of the hypervelocity dynamics of shockcompressed graphite and impacted graphene armours, Comput. Mater. Sci. 170 (2019) 109152. https://doi.org/10.1016/j.commatsci.2019.109152
- N.D. Orekhov, V.V. Stegailov, Molecular-dynamics based insights into the problem of graphite melting, J. Phys. Conf. 653 (2015), 012090. https://doi.org/10.1088/1742-6596/653/1/012090
- A. David, A.D. Nicola, U. Tartaglino, G. Milano, G. Raos, Viscoelasticity of short polymer liquids from atomistic simulations, J. Electrochem. Soc. 166 (9) (2019). B3246-B3256. https://doi.org/10.1149/2.0371909jes
- S. Plimpton, Fast parallel algorithms for short-range molecular dynamics, J. Comput. Phys. 117 (1) (1995) 1-19. https://doi.org/10.1006/jcph.1995.1039
- L. Li, S. Reich, J. Robertson, Defect energies of graphite: density-functional calculations, Phys. Rev. B 72 (2005) 184109. https://doi.org/10.1103/physrevb.72.184109
- A. Stone, D. Wales, Theoretical studies of icosahedral c60 and some related species, Chem. Phys. Lett. 128 (5) (1986) 501-503. https://doi.org/10.1016/0009-2614(86)80661-3
- A. Stukowski, Visualization and analysis of atomistic simulation data with OVITO-the Open Visualization Tool, Model. Simulat. Mater. Sci. Eng. 18 (1) (2010).
- P.-L. Tu, J.-Y. Chung, A new decision-tree classification algorithm for machine learning, in: TAI'92 Proceedings Fourth International Conference on Tools with Artificial Intelligence, IEEE Computer Society, 1992, pp. 370-371.
- A. Priyam, G. Abhijeeta, A. Rathee, S. Srivastava, Comparative analysis of decision tree classification algorithms, International Journal of current engineering and technology 3 (2) (2013) 334-337.
- H.H. Patel, P. Prajapati, Study and analysis of decision tree based classification algorithms, Int. J. Comput. Sci. Eng. 6 (10) (2018) 74-78.
- M. Brijain, R. Patel, M. Kushik, K. Rana, A Survey on Decision Tree Algorithm for Classification, Computer Science, 2014.
- L. Rokach, O. Maimon, Top-down induction of decision trees classifiers-a survey, IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews) 35 (4) (2005) 476-487. https://doi.org/10.1109/TSMCC.2004.843247
- S. Islam, S.S.Z. Ashraf, Point and space groups of graphene, Resonance 24 (4) (2019) 445-457. https://doi.org/10.1007/s12045-019-0797-1