DOI QR코드

DOI QR Code

Hydrothermal synthesis, structure and sorption performance to cesium and strontium ions of nanostructured magnetic zeolite composites

  • Received : 2021.09.27
  • Accepted : 2021.12.07
  • Published : 2022.06.25

Abstract

The problem of water contamination by long-living cesium and strontium radionuclides is an urgent environmental issue. The development of facile and efficient technologies based on nanostructured adsorbents is a perspective for selective radionuclides removal. In this regard, current work aimed to obtain the nanostructured magnetic zeolite composites with high adsorption performance to cesium and strontium ions. The optimal conditions of hydrothermal synthesis were established based on XRD, SEM-EDX, N2 adsorption-desorption, VSM, and batch adsorption experiment data. The role of chemical composition, textural characteristics, and surface morphology was demonstrated. The monolayer ionexchange mechanism was proposed based on adsorption isotherm modeling. The highest Langmuir adsorption capacity of 229.6 and 105.1 mg/g towards cesium and strontium ions was reached for composite obtained at 90 ℃ hydrothermal treatment. It was shown that magnetic characteristics of zeolite composites allowing to separate spent adsorbents by a magnet from aqueous solutions.

Keywords

Acknowledgement

The authors are grateful to the staff of the Laboratory of X-ray Diffraction Analysis of the Institute of Chemistry of the Far Eastern Branch of the Russian Academy of Sciences, Ph.D. Gerasimenko A.V. and Ph.D. Shlyk D.H. for conducting X-ray phase analysis of four experimental samples (providing experimental data) and also are grateful to head of laboratory of chromatography of radioactive elements of the Frumkin Institute of Physical chemistry and Electrochemistry Russian Academy of Sciences, Dr.Sci. Milyutin V.V. for conducting of radionuclides sorption analysis. The investigation was carried out with the financial support of the State Assignment of the Ministry of Science and Higher Education of the Russian Federation topic No. 00657-2020-0006 (Papynov E.K. acknowledges). The assessment of sorption properties was carried out with the financial support of the RFBR, project No. 19-03-00119. The measurement and analysis of the magnetic properties of the samples were carried out with the support of the Russian Science Foundation, project No. 19-72-20071. The equipment of the joint Center for collective Use, the interdisciplinary center in the field of nanotechnology and new functional materials of the FEFU and the laboratory of magnetism, and the laboratory of film technologies of the FEFU were used in the work. (Far Eastern Federal University, FEFU, Vladivostok, Russia). X-ray phase analysis of four samples was carried out on the equipment of the Far Eastern Center for Structural Research (Institute of Chemistry of the FEB RAS, Vladivostok, Russia).

References

  1. D. Alby, C. Charnay, M. Heran, B. Prelot, J. Zajac, Recent developments in nanostructured inorganic materials for sorption of cesium and strontium: synthesis and shaping, sorption capacity, mechanisms, and selectivity-a review, J. Hazard Mater. 344 (2018) 511-530, https://doi.org/10.1016/j.jhazmat.2017.10.047.
  2. O. Arar, Application of sorption process for the removal of radioactive elements, in: A. Nunez-Delgado (Ed.), Sorbents Mater. Control. Environ. Pollut., Elsevier, 2021, pp. 495-512, https://doi.org/10.1016/B978-0-12-820042-1.00020-1.
  3. P.S. Gordienko, I.A. Shabalin, S.B. Yarusova, S.B. Bulanova, V.G. Kuryavyi, V.V. Zheleznov, S.N. Somova, I.G. Zhevtun, Sorption of strontium ions on barium silicates from solutions of complex salt composition, Russ. J. Inorg. Chem. 64 (2019) 1579-1586, https://doi.org/10.1134/S0036023619120052.
  4. V.A. Avramenko, A.M. Egorin, E.K. Papynov, T.A. Sokol'nitskaya, I.G. Tananaev, V.I. Sergienko, Processes for treatment of liquid radioactive waste containing seawater, Radiochemistry 59 (2017), https://doi.org/10.1134/S1066362217040142.
  5. B. Collum, Nuclear fuel cycle, in: Nucl. Facil., Elsevier Ltd., 2017, pp. 1-44, https://doi.org/10.1016/B978-0-08-101938-2.00001-5.
  6. I. Obodovskiy, Radionuclide sources of ionizing radiation, in: Radiat. Fundam. Appl. Risks, Saf., Elsevier, 2019, pp. 259-273, https://doi.org/10.1016/b978-0-444-63979-0.00017-3.
  7. O. Evrard, J.P. Laceby, H. Lepage, Y. Onda, O. Cerdan, S. Ayrault, Radiocesium transfer from hillslopes to the Pacific ocean after the Fukushima nuclear power plant accident: a review, J. Environ. Radioact. 148 (2015) 92-110, https://doi.org/10.1016/j.jenvrad.2015.06.018.
  8. V.V. Levenets, A.Y. Lonin, O.P. Omelnik, A.O. Shchur, Comparison the sorption properties of clinoptilolite and synthetic zeolite during sorption strontium from the water solutions in static conditions: sorption and quantitative determination of strontium by the method PIXE, J. Environ. Chem. Eng. 4 (2016) 3961-3966, https://doi.org/10.1016/j.jece.2016.09.011.
  9. E. Han, Y.G. Kim, H.M. Yang, I.H. Yoon, M. Choi, Synergy between zeolite framework and encapsulated sulfur for enhanced ion-exchange selectivity to radioactive cesium, Chem. Mater. 30 (2018) 5777-5785, https://doi.org/10.1021/acs.chemmater.8b02782.
  10. T.A. Vereshchagina, S.N. Vereshchagin, N.N. Shishkina, N.G. Vasilieva, L.A. Solovyov, A.G. Anshits, Microsphere zeolite materials derived from coal fly ash cenospheres as precursors to mineral-like aluminosilicate hosts for 135,137Cs and 90Sr, J. Nucl. Mater. 437 (2013) 11-18, https://doi.org/10.1016/j.jnucmat.2013.01.343.
  11. S. Smeets, X. Zou, Zeolite structures, in: J. Cejka, H. Bekkum (Eds.), Stud. Surf. Sci. Catal., Elsevier Ltd., 2005, pp. 37-72, https://doi.org/10.1039/9781788010610-00037.
  12. G.D. Gatta, P. Lotti, Systematics, crystal structures, and occurrences of zeolites, in: M. Mercurio, B. Sarkar, A. Langella (Eds.), Modif. Clay Zeolite Nanocomposite Mater. Environ. Pharm. Appl., Elsevier Inc., 2018, pp. 1-25, https://doi.org/10.1016/B978-0-12-814617-0.00001-3.
  13. S. Bahran, M. Ghaedi, R. Tariq, Z. Zalipour, F. Sadeghfar, Fundamental developments in the zeolite process, in: M. Ghaedi (Ed.), Photocatal. Fundam. Process. Appl., Elsevier, 2021, pp. 499-556.
  14. X. Fan, Y. Jiao, Porous materials for catalysis: toward sustainable synthesis and applications of zeolites, in: G. Szekely, A. Livingston (Eds.), Sustain. Nanoscale Eng. From Mater. Des. to Chem. Process., Elsevier Inc., 2019, pp. 115-137, https://doi.org/10.1016/B978-0-12-814681-1.00005-9.
  15. S. Belkhiri, M. Guerza, S. Chouikh, Y. Boucheffa, Z. Mekhalif, J. Delhalle, C. Colella, Textural and structural effects of heat treatment and γ-irradiation on Cs-exchanged NaX zeolite, bentonite and their mixtures, Microporous Mesoporous Mater. 161 (2012) 115-122, https://doi.org/10.1016/j.micromeso.2012.05.027.
  16. G. Cruciani, Zeolites upon heating: factors governing their thermal stability and structural changes, J. Phys. Chem. Solid. 67 (2006) 1973-1994, https://doi.org/10.1016/j.jpcs.2006.05.057.
  17. M. Jimenez-Reyes, P.T. Almazan-Sanchez, M. Solache-Rios, Radioactive waste treatments by using zeolites. A short review, J. Environ. Radioact. 233 (2021), https://doi.org/10.1016/j.jenvrad.2021.106610.
  18. S. Kwon, C. Kim, E. Han, H. Lee, H.S. Cho, M. Choi, Relationship between zeolite structure and capture capability for radioactive cesium and strontium, J. Hazard Mater. 408 (2021) 124419, https://doi.org/10.1016/j.jhazmat.2020.124419.
  19. M. Mahima Kumar, K.A. Irshad, H. Jena, Removal of Cs+ and Sr2+ ions from simulated radioactive waste solutions using Zeolite-A synthesized from kaolin and their structural stability at high pressures, Microporous Mesoporous Mater. 312 (2021) 110773, https://doi.org/10.1016/j.micromeso.2020.110773.
  20. A. Merceille, E. Weinzaepfel, Y. Barre, A. Grandjean, The sorption behaviour of synthetic sodium nonatitanate and zeolite A for removing radioactive strontium from aqueous wastes, Separ. Purif. Technol. 96 (2012) 81-88, https://doi.org/10.1016/j.seppur.2012.05.018.
  21. H.J. Hong, B.G. Kim, J. Ryu, I.S. Park, K.S. Chung, S.M. Lee, J.B. Lee, H.S. Jeong, H. Kim, T. Ryu, Preparation of highly stable zeolite-alginate foam composite for strontium(90Sr) removal from seawater and evaluation of Sr adsorption performance, J. Environ. Manag. 205 (2018) 192-200, https://doi.org/10.1016/j.jenvman.2017.09.072.
  22. A. Kitamura, A. Kirishima, Recent activities in the field of nuclear waste management, J. Nucl. Sci. Technol. 52 (2015) 448-450, https://doi.org/10.1080/00223131.2014.952700.
  23. I. Yamagishi, R. Nagaishi, C. Kato, K. Morita, A. Terada, Y. Kamiji, R. Hino, H. Sato, K. Nishihara, Y. Tsubata, S. Tashiro, R. Saito, T. Satoh, J. Nakano, W. Ji, H. Fukushima, S. Sato, M. Denton, Characterization and storage of radioactive zeolite waste, J. Nucl. Sci. Technol. 51 (2014) 1044-1053, https://doi.org/10.1080/00223131.2014.924446.
  24. E.K. Papynov, Spark plasma sintering of ceramic and glass-ceramic matrices for cesium radionuclides immobilization, in: K. Narang (Ed.), Glas. Prop. Appl. Technol., Nova Science Publisher, Inc, New York, 2018, pp. 107-153. https://mail.google.com/mail/u/0/?pli=1%255Cnpapers3://publication/uuid/D84FC782-E317-4880-B951-0697213436E1.
  25. O.O. Shichalin, E.K. Papynov, V.Y. Maiorov, A.A. Belov, E.B. Modin, I.Y. Buravlev, Y.A. Azarova, A.V. Golub, E.A. Gridasova, A.E. Sukhorada, I.G. Tananaev, V.A. Avramenko, Spark plasma sintering of aluminosilicate ceramic matrices for immobilization of cesium radionuclides, Radiochemistry 61 (2019) 185-191, https://doi.org/10.1134/S1066362219020097.
  26. Y. Yang, T. Wang, Z. Zhang, Z. Ke, C. Shan, X. Cao, L. Ma, S. Peng, A novel method to convert Cs-polluted soil into pollucite-base glass-ceramics for Cs immobilization, Chem. Eng. J. 385 (2020) 123844, https://doi.org/10.1016/j.cej.2019.123844.
  27. P. Cappelletti, G. Rapisardo, B. De Gennaro, A. Colella, A. Langella, S. Fabio, D. Lee, M. De Gennaro, Immobilization of Cs and Sr in aluminosilicate matrices derived from natural zeolites, J. Nucl. Mater. 414 (2011) 451-457, https://doi.org/10.1016/j.jnucmat.2011.05.032.
  28. E.K. Papynov, O.O. Shichalin, V.Y. Mayorov, E.B. Modin, A.S. Portnyagin, I.A. Tkachenko, A.A. Belov, E.A. Gridasova, I.G. Tananaev, V.A. Avramenko, Spark Plasma Sintering as a high-tech approach in a new generation of synthesis of nanostructured functional ceramics, Nanotechnologies Russ 12 (2017) 49-61, https://doi.org/10.1134/S1995078017010086.
  29. S.B. Yarusova, O.O. Shichalin, A.A. Belov, S.A. Azon, I.Y. Buravlev, A.V. Golub, V.Y. Mayorov, A.V. Gerasimenko, E.K. Papynov, A.I. Ivanets, A.A. Buravleva, E.B. Merkulov, V.A. Nepomnyushchaya, O.V. Kapustina, P.S. Gordienko, Synthesis of amorphous KAlSi3O8 for cesium radionuclide immobilization into solid matrices using spark plasma sintering technique, Ceram. Int. (2021), https://doi.org/10.1016/j.ceramint.2021.10.164.
  30. E.K. Papynov, O.O. Shichalin, V.Y. Mayorov, V.G. Kuryavyi, T.A. Kaidalova, SPS technique for ionizing radiation source fabrication based on dense cesium-containing core, J. Hazard Mater. 369 (2019) 25-30, https://doi.org/10.1016/j.jhazmat.2019.02.016.
  31. A. Palcic, V. Valtchev, Synthesis and application of (nano) zeolites, in: Ref. Modul. Chem. Mol. Sci. Chem. Eng., Elsevier, 2021, https://doi.org/10.1016/B978-0-12-823144-9.00005-4.
  32. R.D. Ambashta, M. Sillanpaa, Water purification using magnetic assistance: a review, J. Hazard Mater. 180 (2010) 38-49, https://doi.org/10.1016/j.jhazmat.2010.04.105.
  33. A.B. Bourlinos, R. Zboril, D. Petridis, A simple route towards magnetically modified zeolites, Microporous Mesoporous Mater. 58 (2003) 155-162, https://doi.org/10.1016/S1387-1811(02)00613-3.
  34. L.C.A. Oliveira, D.I. Petkowicz, A. Smaniotto, S.B.C. Pergher, Magnetic zeolites: a new adsorbent for removal of metallic contaminants from water, Water Res. 38 (2004) 3699-3704, https://doi.org/10.1016/j.watres.2004.06.008.
  35. H. Faghihian, M. Moayed, A. Firooz, M. Iravani, Evaluation of a new magnetic zeolite composite for removal of Cs+ and Sr2+ from aqueous solutions: kinetic, equilibrium and thermodynamic studies, Compt. Rendus Chem. 17 (2014) 108-117, https://doi.org/10.1016/j.crci.2013.02.006.
  36. O. Falyouna, O. Eljamal, I. Maamoun, A. Tahara, Y. Sugihara, Magnetic zeolite synthesis for efficient removal of cesium in a lab-scale continuous treatment system, J. Colloid Interface Sci. 571 (2020) 66-79, https://doi.org/10.1016/j.jcis.2020.03.028.
  37. O. Eljamal, T. Shubair, A. Tahara, Y. Sugihara, N. Matsunaga, Iron based nanoparticles-zeolite composites for the removal of cesium from aqueous solutions, J. Mol. Liq. 277 (2019) 613-623, https://doi.org/10.1016/j.molliq.2018.12.115.
  38. T. Shubair, O. Eljamal, A. Tahara, Y. Sugihara, N. Matsunaga, Preparation of new magnetic zeolite nanocomposites for removal of strontium from polluted waters, J. Mol. Liq. 288 (2019) 111026, https://doi.org/10.1016/j.molliq.2019.111026.
  39. M.M. Rahman, S.C. Karmaker, A. Pal, O. Eljamal, B.B. Saha, Statistical techniques for the optimization of cesium removal from aqueous solutions onto iron-based nanoparticle-zeolite composites, Environ. Sci. Pollut. Res. 28 (2021) 12918-12931, https://doi.org/10.1007/s11356-020-11258-1.
  40. H. Faghihian, M. Moayed, A. Firooz, M. Iravani, Synthesis of a novel magnetic zeolite nanocomposite for removal of Cs+ and Sr2+ from aqueous solution: kinetic, equilibrium, and thermodynamic studies, J. Colloid Interface Sci. 393 (2013) 445-451, https://doi.org/10.1016/j.jcis.2012.11.010.
  41. O.A.A. Moamen, H.A. Ibrahim, N. Abdelmonem, I.M. Ismail, Thermodynamic analysis for the sorptive removal of cesium and strontium ions onto synthesized magnetic nano zeolite, Microporous Mesoporous Mater. 223 (2016) 187-195, https://doi.org/10.1016/j.micromeso.2015.11.009.
  42. N. Lihareva, O. Petrov, L. Dimowa, Y. Tzvetanova, I. Piroeva, F. Ublekov, A. Nikolov, Ion exchange of Cs+ and Sr2+ by natural clinoptilolite from bicationic solutions and XRD control of their structural positioning, J. Radioanal. Nucl. Chem. 323 (2020) 1093-1102, https://doi.org/10.1007/s10967-020-07018-7.
  43. T. Kouznetsova, A. Ivanets, V. Prozorovich, A. Hosseini-Bandegharaei, H.N. Tran, V. Srivastava, M. Sillanpaa, Sorption and mechanism studies of Cu2+, Sr2+ and Pb2+ ions on mesoporous aluminosilicates/zeolite composite sorbents, Water Sci. Technol. 82 (2020) 984-997, https://doi.org/10.2166/wst.2020.407.
  44. J.C. Buhl, Synthesis of a sulfate enclathrated zeolite with intermediate framework structure between sodalite and cancrinite, Zeitschrift Fur Anorg. Und Allg. Chemie. 643 (2017) 1030-1036, https://doi.org/10.1002/zaac.201700101.
  45. A.N. Sapozhnikov, V.L. Tauson, S.V. Lipko, R.Y. Shendrik, V.I. Levitskii, L.F. Suvorova, N.V. Chukanov, M.F. Vigasina, On the crystal chemistry of sulfurrich lazurite, ideally Na7Ca(Al6Si6O24)(SO4)(S3)-·nH2O, Am. Mineral. 106 (2021) 226-234, https://doi.org/10.2138/am-2020-7317.
  46. N.V. Chukanov, A.N. Sapozhnikov, R.Y. Shendrik, M.F. Vigasina, R. Steudel, Spectroscopic and crystal-chemical features of sodalite-group minerals from gem lazurite deposits, Minerals 10 (2020) 1-23, https://doi.org/10.3390/min10111042.
  47. S.R. Kankrej, M.S. Kulkarni, A.V. Borhade, Adsorption isotherms, thermodynamics, kinetics and mechanism for the removal of Ca2+, Mg2+ and Cu2+ ions onto Nosean prepared by using Coal Fly Ash, J. Environ. Chem. Eng. 6 (2018) 2369-2381, https://doi.org/10.1016/j.jece.2017.12.048.
  48. S.R. Kankrej, M.S. Kulkarni, R.P. Patil, A.V. Borhade, Kinetic and thermodynamic studies on adsorption behaviour of rhodamine B dye on nosean synthesised from coal, J. Emerg. Technol. Innov. Res. 5 (2018) 367-379.
  49. X. Ren, R. Qu, S. Liu, H. Zhao, W. Wu, H. Song, C. Zheng, X. Wu, X. Gao, Synthesis of zeolites from coal fly ash for the removal of harmful gaseous pollutants: a review, Aerosol Air Qual. Res. 20 (2020) 1127-1144, https://doi.org/10.4209/aaqr.2019.12.0651.
  50. S. Behrens, Preparation of functional magnetic nanocomposites and hybrid materials: recent progress and future directions, Nanoscale 3 (2011) 877-892, https://doi.org/10.1039/c0nr00634c.
  51. T.M. Gesing, J.-C. Buhl, Crystal structure of a carbonate-nosean Nas [AlSiO4]6CO3, Eur. J. Mineral 10 (1998) 71-78, https://doi.org/10.1127/ejm/10/1/0071.
  52. C.H. Giles, T.H. MacEwan, S.N. Nakhwa, D. Smith, Studies in adsorption. Part XI. A system of Classi$cation of solution adsorption isotherms, and its use in diagnosis of adsorption mechanisms and in measurement of specific surface areas of solids, J. Chem. Soc. (1960) 3973-3993.
  53. J.S. Lee, J.M. Cha, H.Y. Yoon, J.K. Lee, Y.K. Kim, Magnetic multi-granule nano-clusters: a model system that exhibits universal size effect of magnetic coercivity, Sci. Rep. 5 (2015) 1-7, https://doi.org/10.1038/srep12135.
  54. B.D. Cullity, C.D. Graham, Introduction to Magnetic Materials, second ed., John Wiley & Sons, Inc., Hoboken, NJ, USA, 2008 https://doi.org/10.1002/9780470386323.