DOI QR코드

DOI QR Code

Fault injection and failure analysis on Xilinx 16 nm FinFET Ultrascale+ MPSoC

  • Yang, Weitao (School of Nuclear Science & Technology, Xi'an Jiaotong University) ;
  • Li, Yonghong (School of Nuclear Science & Technology, Xi'an Jiaotong University) ;
  • He, Chaohui (School of Nuclear Science & Technology, Xi'an Jiaotong University)
  • Received : 2021.05.07
  • Accepted : 2021.12.17
  • Published : 2022.06.25

Abstract

Energetic particle strikes the device and induces data corruption in the configuration memory (CRAM), causing errors and even malfunctions in a system on chip (SoC). Software-based fault injection is a convenient way to assess device performance. In this paper, dynamic partial reconfiguration (DPR) is adopted to make fault injection on a Xilinx 16 nm FinFET Ultrascale+ MPSoC. And the reconfiguration module implements the Sobel and Gaussian image filtering, respectively. Fault injections are executed on the static and reconfiguration modules' bitstreams, respectively. Another contribution is that the failure modes and effects analysis (FMEA) method is applied to evaluate the system reliability, according to the obtained injection results. This paper proposes a software-based solution to estimate programmable device vulnerability.

Keywords

Acknowledgement

Project supported by National Natural Science Foundation of China (Grant Nos. 11575138, 11835006, 11690040, and 11690043), National Key Laboratory of Materials Behavior and Evaluation Technology in Space Environment, Harbin Institute of Technology (Grant No.6142910190304), and China Scholarships Council (Grant No. 201906280343).

References

  1. H. Asadi, M.B. Tahoori, B. Mullins, D. Kaeli, Kevin Granlund, Soft error susceptibility analysis of SRAM-based FPGAs in high-performance information systems, IEEE Trans. Nucl. Sci. 54 (6) (2007) 2714-2726. https://doi.org/10.1109/TNS.2007.910426
  2. T.S. Nidhin, A. Bhattacharyya, R.P. Behera, T. Jayanthi, K. Velusamy, Understanding radiation effects in SRAM-based field programmable gate arrays for implementing instrumentation and control systems of nuclear power plants, Nucl. Eng. Technol. 49 (2017) 1589-1599. https://doi.org/10.1016/j.net.2017.09.002
  3. F. Siegle, T. Vladimirova, J. Ilstad, O. Emam, Mitigation of radiation effects in SRAM-based FPGAs for Space applications, ACM Comput. Surv. 47 (2) (2015) 37.
  4. W.T. Yang, Y.H. Li, Y.X. Guo, H.Y. Zhao, Y. Yang Li, P. Pei Li, C.H. He, G. Guo, J. Jie Liu, S.S. Yang, H. An, Investigation of single event effect in 28-nm system-on-chip with multi patterns, Chin. Phys. B 29 (10) (2020) 108504. https://doi.org/10.1088/1674-1056/ab99b8
  5. J. Kim, E. Kim, J. Yoo, Y. Lee, G. Cho, An integrated software testing framework for FPGABased controllers in nuclear power plants, Nucl. Eng. Technol. 48 (2016) 470-481. https://doi.org/10.1016/j.net.2015.12.008
  6. M. Kooli, G.D. Natale, A survey on simulation-based fault injection tools for complex systems, in: 2014 9th IEEE International Conference on Design & Technology of Integrated Systems in Nanoscale Era (DTIS), Santorini, Greece, 2014.
  7. C. Bernardeschi, L. Cassano, A. Domenici, SRAM-based FPGA systems for safety-critical applications: a survey on design standards and proposed methodologies, J. Comput. Sci. Technol. 30 (2) (2015) 373-390. https://doi.org/10.1007/s11390-015-1530-5
  8. C.H. Hoo, A. Kumar, An area-efficient partially reconfigurable crossbar switch with low reconfiguration delay, in: 22nd International Conference on Field Programmable Logic and Applications (FPL), Oslo, Norway, 2012.
  9. V.M.G. Martins, P.R.C. Villa, R. Travessini, M.D. Berejuck, E.A. Bezerr, A dynamic partial reconfiguration design flow for permanent faults mitigation in FPGAs, Microelectron. Reliab. 83 (2018) 50-63. https://doi.org/10.1016/j.microrel.2018.01.011
  10. A.E. Wilson, M. Wirthlin, Reconfigurable real-time video pipelines on SRAM-based FPGAs, in: 2019 International Conference on ReConFigurable Computing and FPGAs (ReConFig), Cancun, Mexico, 2019.
  11. Y.B. Jiang, M.S. Pattichis, A dynamically reconfigurable architecture system for time-varying image constraints (drastic) for motion jpeg, J. Real-Time Image. Pr 14 (2) (2018) 395-411. https://doi.org/10.1007/s11554-014-0460-8
  12. D. Llamocca, M. Pattichis, A dynamically reconfigurable pixel processor system based on power/energy-performance-accuracy optimization, IEEE Trans. Circ. Syst. Video Technol. 23 (3) (2013) 488-502. https://doi.org/10.1109/TCSVT.2012.2210664
  13. C. Kohn, XAPP1159 Partial Reconfiguration of a Hardware Accelerator on Zynq-7000 All Programmable SoC Devices, 2013.
  14. F. Libano, B. Wilson, M. Wirthlin, P. Rech, J. Brunhaver, Understanding the impact of quantization, accuracy, and radiation on the reliability of convolutional neural networks on FPGAs, IEEE Trans. Nucl. Sci. 67 (7) (2020) 1478-1484. https://doi.org/10.1109/tns.2020.2983662
  15. P. Maillard, M.J. Hart, P. Chang, Y.P. Chen, M. Welter, R. Le, R. Ismail, J. Barton, E. Crabill, Single-event evaluation of Xilinx 16nm UltraScale+TM single event mitigation IP, in: 2018 IEEE Radiation Effects Data Workshop (REDW), Waikoloa Village, HI, USA, 2018.
  16. P. Maillard, M.J. Hart, J. Barton, et al., Neutron, 64 MeV proton & alpha single-event characterization of Xilinx 16nm FinFET Zynq® UltraScale+TM MPSoC, in: 2017 IEEE Radiation Effects Data Workshop (REDW), New Orleans, LA, USA, 2017.
  17. M. Glorieux, A. Evans, T. Lange, et al., Single-event characterization of Xilinx UltraScale+r MPSOC under standard and ultra-high energy heavy-ion irradiation, in: 2018 IEEE Radiation Effects Data Workshop (REDW), Waikoloa Village, HI, USA, 2018.
  18. L. Sterpone, S. Azimi, L. Bozzoli, et al., A novel error rate estimation approach for UltraScale+ SRAM-based FPGAs, in: 2018 NASA/ESA Conference on Adaptive Hardware and Systems (AHS), Edinburgh, 2018.
  19. P. McNelles, L.X. Lu, Field programmable gate array reliability Analysis using the dynamic flowgraph methodology, Nucl. Eng. Technol. 48 (2016) 1192-1205. https://doi.org/10.1016/j.net.2016.03.004
  20. P. Conmy, I. Bate, Component-based safety analysis of FPGAs, IEEE Trans. Ind. Inf. 6 (2) (2010) 195-205. https://doi.org/10.1109/TII.2009.2039938
  21. M.J. Peng, H. Wang, S.S. Chen, G.L. Xia, Y.K. Liu, X. Yang, A. Ayodejia, An intelligent hybrid methodology of on-line system-level fault diagnosis for nuclear power plant, Nucl. Eng. Technol. 50 (3) (2018) 396-410. https://doi.org/10.1016/j.net.2017.11.014
  22. R. Mariani, G. Boschi, A systematic approach for failure modes and effects analysis of system-on-chips, in: 13th IEEE International On-Line Testing Symposium (IOLTS 2007), Crete, Greece, 2007.
  23. http://ivpcl.unm.edu/ivpclpages/Research/drastic/PRWebPage/PR_Sub.php.
  24. S. Kim, A.K. Somani, Soft error sensitivity characterization for microprocessor dependability enhancement strategy, in: IEEE International Conference on Dependable Systems and Networks, Washington, D. C, 2002.
  25. G. Fakhreddine, S. Fouad, E. Mohamed, G. Bertrand, Fast SRAM-FPGA fault injection platform based on dynamic partial reconfiguration, in: 2014 26th International Conference on Microelectronics (ICM), Doha, 2014.
  26. T.M. Tom, J. Plusquelic, D. Brian, Information leakage analysis using accelerated fault injection emulation of a RISC-V microprocessor, SAND2020-0503C, https://www.osti.gov/servlets/purl/1761288.
  27. P. Arturo, R. Alfonso, O. Andres, G.A. David, J. Alvaro, A.V. Miguel, D.L.T. Eduardo, Run-time reconfigurable MPSoC-based on-board processor for vision-based Space navigation, IEEE Access 8 (2020) 59891-59905. https://doi.org/10.1109/access.2020.2983308
  28. W.T. Yang, X.C. Du, J.L. Guo, J.Z. Wei, G.H. Du, C.H. He, W.J. Liu, S.S. Shen, C.L. Huang, Y.H. Li, Y.Y. Fan, Preliminary single event effect distribution investigation on 28 nm SoC using heavy ion microbeam, Nucl. Instrum. Methods Phys. Res. B 450 (2019) 323-326. https://doi.org/10.1016/j.nimb.2018.09.038
  29. Y.Y. Chen, Y.C. Wang, J. Peng, SoC-level fault injection methodology in SystemC design Platform, in: Asia Simulation Conference-International Conference on System Simulation and Scientific Computing, Beijing, China, 2008.
  30. Y.Y. Chen, C.H. Hsu, K.L. Leu, SoC-level risk assessment using FMEA approach in system design with SystemC, in: IEEE International Symposium on Industrial Embedded Systems, Lausanne, Switzerland, 2009.
  31. Xilinx Inc., UG116 Device Reliability Report, 2015 v10.2.1.
  32. Xilinx Inc., XAPP1361, Isolation Design Flow + Dynamic Function eXchange Example, 2021. V1.0.
  33. W.T. Yang, B.Y. Du, C.H. He, S. Luca, Reliability assessment on 16 nm ultrascale+ MPSoC using fault injection and fault tree analysis, Microelectron. Reliab. 120 (2021) 114122. https://doi.org/10.1016/j.microrel.2021.114122