Browse > Article
http://dx.doi.org/10.1016/j.net.2021.12.022

Fault injection and failure analysis on Xilinx 16 nm FinFET Ultrascale+ MPSoC  

Yang, Weitao (School of Nuclear Science & Technology, Xi'an Jiaotong University)
Li, Yonghong (School of Nuclear Science & Technology, Xi'an Jiaotong University)
He, Chaohui (School of Nuclear Science & Technology, Xi'an Jiaotong University)
Publication Information
Nuclear Engineering and Technology / v.54, no.6, 2022 , pp. 2031-2036 More about this Journal
Abstract
Energetic particle strikes the device and induces data corruption in the configuration memory (CRAM), causing errors and even malfunctions in a system on chip (SoC). Software-based fault injection is a convenient way to assess device performance. In this paper, dynamic partial reconfiguration (DPR) is adopted to make fault injection on a Xilinx 16 nm FinFET Ultrascale+ MPSoC. And the reconfiguration module implements the Sobel and Gaussian image filtering, respectively. Fault injections are executed on the static and reconfiguration modules' bitstreams, respectively. Another contribution is that the failure modes and effects analysis (FMEA) method is applied to evaluate the system reliability, according to the obtained injection results. This paper proposes a software-based solution to estimate programmable device vulnerability.
Keywords
Fault injection; Failure analysis; Ultrascale+ MPSoC; Failure modes and effects analysis;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 Y.Y. Chen, C.H. Hsu, K.L. Leu, SoC-level risk assessment using FMEA approach in system design with SystemC, in: IEEE International Symposium on Industrial Embedded Systems, Lausanne, Switzerland, 2009.
2 W.T. Yang, B.Y. Du, C.H. He, S. Luca, Reliability assessment on 16 nm ultrascale+ MPSoC using fault injection and fault tree analysis, Microelectron. Reliab. 120 (2021) 114122.   DOI
3 P. McNelles, L.X. Lu, Field programmable gate array reliability Analysis using the dynamic flowgraph methodology, Nucl. Eng. Technol. 48 (2016) 1192-1205.   DOI
4 P. Conmy, I. Bate, Component-based safety analysis of FPGAs, IEEE Trans. Ind. Inf. 6 (2) (2010) 195-205.   DOI
5 D. Llamocca, M. Pattichis, A dynamically reconfigurable pixel processor system based on power/energy-performance-accuracy optimization, IEEE Trans. Circ. Syst. Video Technol. 23 (3) (2013) 488-502.   DOI
6 F. Siegle, T. Vladimirova, J. Ilstad, O. Emam, Mitigation of radiation effects in SRAM-based FPGAs for Space applications, ACM Comput. Surv. 47 (2) (2015) 37.
7 R. Mariani, G. Boschi, A systematic approach for failure modes and effects analysis of system-on-chips, in: 13th IEEE International On-Line Testing Symposium (IOLTS 2007), Crete, Greece, 2007.
8 http://ivpcl.unm.edu/ivpclpages/Research/drastic/PRWebPage/PR_Sub.php.
9 H. Asadi, M.B. Tahoori, B. Mullins, D. Kaeli, Kevin Granlund, Soft error susceptibility analysis of SRAM-based FPGAs in high-performance information systems, IEEE Trans. Nucl. Sci. 54 (6) (2007) 2714-2726.   DOI
10 T.S. Nidhin, A. Bhattacharyya, R.P. Behera, T. Jayanthi, K. Velusamy, Understanding radiation effects in SRAM-based field programmable gate arrays for implementing instrumentation and control systems of nuclear power plants, Nucl. Eng. Technol. 49 (2017) 1589-1599.   DOI
11 L. Sterpone, S. Azimi, L. Bozzoli, et al., A novel error rate estimation approach for UltraScale+ SRAM-based FPGAs, in: 2018 NASA/ESA Conference on Adaptive Hardware and Systems (AHS), Edinburgh, 2018.
12 Xilinx Inc., XAPP1361, Isolation Design Flow + Dynamic Function eXchange Example, 2021. V1.0.
13 W.T. Yang, Y.H. Li, Y.X. Guo, H.Y. Zhao, Y. Yang Li, P. Pei Li, C.H. He, G. Guo, J. Jie Liu, S.S. Yang, H. An, Investigation of single event effect in 28-nm system-on-chip with multi patterns, Chin. Phys. B 29 (10) (2020) 108504.   DOI
14 M. Glorieux, A. Evans, T. Lange, et al., Single-event characterization of Xilinx UltraScale+r MPSOC under standard and ultra-high energy heavy-ion irradiation, in: 2018 IEEE Radiation Effects Data Workshop (REDW), Waikoloa Village, HI, USA, 2018.
15 P. Arturo, R. Alfonso, O. Andres, G.A. David, J. Alvaro, A.V. Miguel, D.L.T. Eduardo, Run-time reconfigurable MPSoC-based on-board processor for vision-based Space navigation, IEEE Access 8 (2020) 59891-59905.   DOI
16 C. Bernardeschi, L. Cassano, A. Domenici, SRAM-based FPGA systems for safety-critical applications: a survey on design standards and proposed methodologies, J. Comput. Sci. Technol. 30 (2) (2015) 373-390.   DOI
17 A.E. Wilson, M. Wirthlin, Reconfigurable real-time video pipelines on SRAM-based FPGAs, in: 2019 International Conference on ReConFigurable Computing and FPGAs (ReConFig), Cancun, Mexico, 2019.
18 C. Kohn, XAPP1159 Partial Reconfiguration of a Hardware Accelerator on Zynq-7000 All Programmable SoC Devices, 2013.
19 P. Maillard, M.J. Hart, P. Chang, Y.P. Chen, M. Welter, R. Le, R. Ismail, J. Barton, E. Crabill, Single-event evaluation of Xilinx 16nm UltraScale+TM single event mitigation IP, in: 2018 IEEE Radiation Effects Data Workshop (REDW), Waikoloa Village, HI, USA, 2018.
20 P. Maillard, M.J. Hart, J. Barton, et al., Neutron, 64 MeV proton & alpha single-event characterization of Xilinx 16nm FinFET Zynq® UltraScale+TM MPSoC, in: 2017 IEEE Radiation Effects Data Workshop (REDW), New Orleans, LA, USA, 2017.
21 C.H. Hoo, A. Kumar, An area-efficient partially reconfigurable crossbar switch with low reconfiguration delay, in: 22nd International Conference on Field Programmable Logic and Applications (FPL), Oslo, Norway, 2012.
22 G. Fakhreddine, S. Fouad, E. Mohamed, G. Bertrand, Fast SRAM-FPGA fault injection platform based on dynamic partial reconfiguration, in: 2014 26th International Conference on Microelectronics (ICM), Doha, 2014.
23 W.T. Yang, X.C. Du, J.L. Guo, J.Z. Wei, G.H. Du, C.H. He, W.J. Liu, S.S. Shen, C.L. Huang, Y.H. Li, Y.Y. Fan, Preliminary single event effect distribution investigation on 28 nm SoC using heavy ion microbeam, Nucl. Instrum. Methods Phys. Res. B 450 (2019) 323-326.   DOI
24 Xilinx Inc., UG116 Device Reliability Report, 2015 v10.2.1.
25 J. Kim, E. Kim, J. Yoo, Y. Lee, G. Cho, An integrated software testing framework for FPGABased controllers in nuclear power plants, Nucl. Eng. Technol. 48 (2016) 470-481.   DOI
26 M. Kooli, G.D. Natale, A survey on simulation-based fault injection tools for complex systems, in: 2014 9th IEEE International Conference on Design & Technology of Integrated Systems in Nanoscale Era (DTIS), Santorini, Greece, 2014.
27 F. Libano, B. Wilson, M. Wirthlin, P. Rech, J. Brunhaver, Understanding the impact of quantization, accuracy, and radiation on the reliability of convolutional neural networks on FPGAs, IEEE Trans. Nucl. Sci. 67 (7) (2020) 1478-1484.   DOI
28 M.J. Peng, H. Wang, S.S. Chen, G.L. Xia, Y.K. Liu, X. Yang, A. Ayodejia, An intelligent hybrid methodology of on-line system-level fault diagnosis for nuclear power plant, Nucl. Eng. Technol. 50 (3) (2018) 396-410.   DOI
29 V.M.G. Martins, P.R.C. Villa, R. Travessini, M.D. Berejuck, E.A. Bezerr, A dynamic partial reconfiguration design flow for permanent faults mitigation in FPGAs, Microelectron. Reliab. 83 (2018) 50-63.   DOI
30 Y.B. Jiang, M.S. Pattichis, A dynamically reconfigurable architecture system for time-varying image constraints (drastic) for motion jpeg, J. Real-Time Image. Pr 14 (2) (2018) 395-411.   DOI
31 Y.Y. Chen, Y.C. Wang, J. Peng, SoC-level fault injection methodology in SystemC design Platform, in: Asia Simulation Conference-International Conference on System Simulation and Scientific Computing, Beijing, China, 2008.
32 S. Kim, A.K. Somani, Soft error sensitivity characterization for microprocessor dependability enhancement strategy, in: IEEE International Conference on Dependable Systems and Networks, Washington, D. C, 2002.
33 T.M. Tom, J. Plusquelic, D. Brian, Information leakage analysis using accelerated fault injection emulation of a RISC-V microprocessor, SAND2020-0503C, https://www.osti.gov/servlets/purl/1761288.