DOI QR코드

DOI QR Code

A SiC MOSFET-based parallel multi-inverter inductive power transfer (IPT) system

  • Bo, Qiang (Institute of Electrical Engineering, Chinese Academy of Sciences) ;
  • Wang, Lifang (Institute of Electrical Engineering, Chinese Academy of Sciences) ;
  • Zhang, Yuwang (Institute of Electrical Engineering, Chinese Academy of Sciences)
  • Received : 2021.06.22
  • Accepted : 2022.02.24
  • Published : 2022.06.20

Abstract

A parallel multi-inverter inductive power transfer (IPT) system based on SiC MOSFETs is presented to upgrade the power level and to suppress the circulating current. First, the basic principle and a mathematical model of a parallel multi-inverter IPT system are analyzed, and the output current and power for each of the parallel inverters are modeled. Second, the compensation network parameters for the parallel multi-inverter IPT system are configured and a cooperative control strategy is given. Third, various circulating loops and zero-voltage-switching (ZVS) operation are studied. Finally, a 1.2 kW IPT system is built for experimental verification. Results obtained with the experimental system demonstrate that the output power ratio for each of the parallel inverters is about 1:2 and all of them achieve ZVS. In addition, the maximum efficiency of the DC-DC system is measured to be 92.53%, while the circulating current amplitude is only 0.2 A.

Keywords

Acknowledgement

This work was supported in part by the National special fund for international science and technology cooperation under Grant 2019YFE0100200, the National Natural Science Foundation of China under Grant 51807188, and the Chinese Academy of Sciences under Grant XDA22010403.

References

  1. Kao, J.-J., Lin, C.-L., Liu, Y.-C., Huang, C.-C., Jian, H.-S.: Adaptive bidirectional inductive power and data transmission system. IEEE Trans. Power Electron. 36(7), 7550-7563 (2021) https://doi.org/10.1109/TPEL.2020.3047069
  2. Li, Y., Ma, J.N., Shi, S.B., et al.: Transfer characteristics analysis of bilayer coil structures for wireless power transfer systems. J. Power Electron. 21(10), 840-851 (2021) https://doi.org/10.1007/s43236-021-00231-x
  3. Cheng, C., et al.: A load-independent LCC-compensated wireless power transfer system for multiple loads with a compact coupler design. IEEE Trans. Ind. Electron. 67(6), 4507-4515 (2020) https://doi.org/10.1109/tie.2019.2931260
  4. Pries, J., Galigekere, V.P.N., Onar, O.C., Su, G.: A 50-kW three-phase wireless power transfer system using bipolar windings and series resonant networks for rotating magnetic fields. IEEE Trans. Power Electron. 35(5), 4500-4517 (2020) https://doi.org/10.1109/tpel.2019.2942065
  5. Yan, Z., Song, B., Zhang, Y., Zhang, K., Mao, Z., Hu, Y.: A rotation-free wireless power transfer system with stable output power and efficiency for autonomous underwater vehicles. IEEE Trans. Power Electron. 34(5), 4005-4008 (2019) https://doi.org/10.1109/tpel.2018.2871316
  6. Machura, P., De Santis, V., Li, Q.: Driving range of electric vehicles charged by wireless power transfer. IEEE Trans. Veh. Technol. 69(6), 5968-5982 (2020) https://doi.org/10.1109/tvt.2020.2984386
  7. Ai, Y., Hu, X., Li, X., et al.: Analysis and study of compact inductive power transfer systems for EV charging. J. Power Electron. 21(4), 829-839 (2021) https://doi.org/10.1007/s43236-021-00226-8
  8. Zhu, G., Gao, D.: Highly effective leakage magnetic field suppression by using a reactive coil in perfectly aligned EV wireless charging systems. J. Power Electron. 20(1), 11-21 (2020) https://doi.org/10.1007/s43236-019-00007-4
  9. Tega, N., Sato, S., Shima, A.: Comparison of extremely high-temperature characteristics of planar and three-dimensional SiC MOSFETs. IEEE Electron. Device Lett. 40(9), 1382-1384 (2019) https://doi.org/10.1109/led.2019.2930712
  10. He, N., Chen, M., Wu, J., Zhu, N., Xu, D.: 20-kW zero-voltage-switching SiC-MOSFET grid inverter with 300 kHz switching frequency. IEEE Trans. Power Electron. 34(6), 5175-5190 (2019) https://doi.org/10.1109/tpel.2018.2866824
  11. Zeng, Z., Zhang, X., Zhang, Z.: Imbalance current analysis and its suppression methodology for parallel SiC MOSFETs with aid of a differential mode choke. IEEE Trans. Ind. Electron. 67(2), 1508-1519 (2020) https://doi.org/10.1109/tie.2019.2901655
  12. Bosshard, R., Kolar, J.W.: Multi-objective optimization of 50 kW/85 kHz IPT system for public transport. IEEE J. Emerg. Select. Top. Power Electron. 4(4), 1370-1382 (2016) https://doi.org/10.1109/JESTPE.2016.2598755
  13. Hao, H., Covic, G.A., Boys, J.T.: A parallel topology for inductive power transfer power supplies. IEEE Trans. Power Electron. 29(3), 1140-1151 (2014) https://doi.org/10.1109/TPEL.2013.2262714
  14. Li, Y., et al.: Efficiency analysis and optimization control for input-parallel output-series wireless power transfer systems. IEEE Trans. Power Electron. 35(1), 1074-1085 (2020) https://doi.org/10.1109/tpel.2019.2914299
  15. Kim, J.H., et al.: Development of 1-MW inductive power transfer system for a high-speed train. IEEE Trans. Ind. Electron. 62(10), 6242-6250 (2015) https://doi.org/10.1109/TIE.2015.2417122
  16. Schonknecht, A., De Doncker, R.W.A.A.: Novel topology for parallel connection of soft-switching high-power high-frequency inverters. IEEE Trans. Ind. Appl. 39(2), 550-555 (2003) https://doi.org/10.1109/TIA.2003.809453
  17. Jiang, Y., Wang, L., Fang, J., et al.: A joint control with variable ZVS angles for dynamic efficiency optimization in wireless power transfer system. IEEE Trans. Power Electron. 35(10), 11064-11081 (2020) https://doi.org/10.1109/tpel.2020.2977849
  18. Zhu, A., et al.: Modeling and phase synchronization control of high-power wireless power transfer system supplied by modular parallel multi-inverters. IEEE Trans. Veh. Technol. 70(7), 6450-6462 (2021) https://doi.org/10.1109/TVT.2021.3080515
  19. Wireless power transfer for light-duty plug-in/electric vehicles and alignment methodology. Society of Automotive Engineers, SAE Std. J2954. https://www.sae.org/standards/content/j2954/