Acknowledgement
This work was supported in part by the National special fund for international science and technology cooperation under Grant 2019YFE0100200, the National Natural Science Foundation of China under Grant 51807188, and the Chinese Academy of Sciences under Grant XDA22010403.
References
- Kao, J.-J., Lin, C.-L., Liu, Y.-C., Huang, C.-C., Jian, H.-S.: Adaptive bidirectional inductive power and data transmission system. IEEE Trans. Power Electron. 36(7), 7550-7563 (2021) https://doi.org/10.1109/TPEL.2020.3047069
- Li, Y., Ma, J.N., Shi, S.B., et al.: Transfer characteristics analysis of bilayer coil structures for wireless power transfer systems. J. Power Electron. 21(10), 840-851 (2021) https://doi.org/10.1007/s43236-021-00231-x
- Cheng, C., et al.: A load-independent LCC-compensated wireless power transfer system for multiple loads with a compact coupler design. IEEE Trans. Ind. Electron. 67(6), 4507-4515 (2020) https://doi.org/10.1109/tie.2019.2931260
- Pries, J., Galigekere, V.P.N., Onar, O.C., Su, G.: A 50-kW three-phase wireless power transfer system using bipolar windings and series resonant networks for rotating magnetic fields. IEEE Trans. Power Electron. 35(5), 4500-4517 (2020) https://doi.org/10.1109/tpel.2019.2942065
- Yan, Z., Song, B., Zhang, Y., Zhang, K., Mao, Z., Hu, Y.: A rotation-free wireless power transfer system with stable output power and efficiency for autonomous underwater vehicles. IEEE Trans. Power Electron. 34(5), 4005-4008 (2019) https://doi.org/10.1109/tpel.2018.2871316
- Machura, P., De Santis, V., Li, Q.: Driving range of electric vehicles charged by wireless power transfer. IEEE Trans. Veh. Technol. 69(6), 5968-5982 (2020) https://doi.org/10.1109/tvt.2020.2984386
- Ai, Y., Hu, X., Li, X., et al.: Analysis and study of compact inductive power transfer systems for EV charging. J. Power Electron. 21(4), 829-839 (2021) https://doi.org/10.1007/s43236-021-00226-8
- Zhu, G., Gao, D.: Highly effective leakage magnetic field suppression by using a reactive coil in perfectly aligned EV wireless charging systems. J. Power Electron. 20(1), 11-21 (2020) https://doi.org/10.1007/s43236-019-00007-4
- Tega, N., Sato, S., Shima, A.: Comparison of extremely high-temperature characteristics of planar and three-dimensional SiC MOSFETs. IEEE Electron. Device Lett. 40(9), 1382-1384 (2019) https://doi.org/10.1109/led.2019.2930712
- He, N., Chen, M., Wu, J., Zhu, N., Xu, D.: 20-kW zero-voltage-switching SiC-MOSFET grid inverter with 300 kHz switching frequency. IEEE Trans. Power Electron. 34(6), 5175-5190 (2019) https://doi.org/10.1109/tpel.2018.2866824
- Zeng, Z., Zhang, X., Zhang, Z.: Imbalance current analysis and its suppression methodology for parallel SiC MOSFETs with aid of a differential mode choke. IEEE Trans. Ind. Electron. 67(2), 1508-1519 (2020) https://doi.org/10.1109/tie.2019.2901655
- Bosshard, R., Kolar, J.W.: Multi-objective optimization of 50 kW/85 kHz IPT system for public transport. IEEE J. Emerg. Select. Top. Power Electron. 4(4), 1370-1382 (2016) https://doi.org/10.1109/JESTPE.2016.2598755
- Hao, H., Covic, G.A., Boys, J.T.: A parallel topology for inductive power transfer power supplies. IEEE Trans. Power Electron. 29(3), 1140-1151 (2014) https://doi.org/10.1109/TPEL.2013.2262714
- Li, Y., et al.: Efficiency analysis and optimization control for input-parallel output-series wireless power transfer systems. IEEE Trans. Power Electron. 35(1), 1074-1085 (2020) https://doi.org/10.1109/tpel.2019.2914299
- Kim, J.H., et al.: Development of 1-MW inductive power transfer system for a high-speed train. IEEE Trans. Ind. Electron. 62(10), 6242-6250 (2015) https://doi.org/10.1109/TIE.2015.2417122
- Schonknecht, A., De Doncker, R.W.A.A.: Novel topology for parallel connection of soft-switching high-power high-frequency inverters. IEEE Trans. Ind. Appl. 39(2), 550-555 (2003) https://doi.org/10.1109/TIA.2003.809453
- Jiang, Y., Wang, L., Fang, J., et al.: A joint control with variable ZVS angles for dynamic efficiency optimization in wireless power transfer system. IEEE Trans. Power Electron. 35(10), 11064-11081 (2020) https://doi.org/10.1109/tpel.2020.2977849
- Zhu, A., et al.: Modeling and phase synchronization control of high-power wireless power transfer system supplied by modular parallel multi-inverters. IEEE Trans. Veh. Technol. 70(7), 6450-6462 (2021) https://doi.org/10.1109/TVT.2021.3080515
- Wireless power transfer for light-duty plug-in/electric vehicles and alignment methodology. Society of Automotive Engineers, SAE Std. J2954. https://www.sae.org/standards/content/j2954/