DOI QR코드

DOI QR Code

A Study of Whitening Functional Activity Verification from Red Bean (Phaseolus angularis) Shell Extract

팥 껍질 추출물의 미백 기능성 활성 검증

  • Lee, Soo-Yeon (Division of Bio-Technology and Convergence, Daegu Haany University) ;
  • Oh, Min-Jeong (Division of Cosmetics and Biotechnology, Hoseo University) ;
  • Yeom, Hyeon-Ji (Division of Cosmetics and Biotechnology, Hoseo University) ;
  • Lee, Jin-Young (Division of Cosmetics and Biotechnology, Hoseo University)
  • 이수연 (대구한의대학교 바이오산업융합학부) ;
  • 오민정 (호서대학교 화장품생명공학부) ;
  • 염현지 (호서대학교 화장품생명공학부) ;
  • 이진영 (호서대학교 화장품생명공학부)
  • Received : 2021.11.26
  • Accepted : 2022.05.26
  • Published : 2022.06.28

Abstract

Whitening effect of the extract of Phaseolus angularis (PA) shell was investigated for its potential application as a functional ingredient for cosmetic products. The tyrosinase inhibitory effect, which is related to whitening, was 76.4% at a concentration of 1,000 ㎍/ml. Cell viability of melanoma cells was measured to test toxicity of the PA shell extract at concentrations showing at least 90% viability. In addition, western blot and RT-PCR assays of the PA shell extract showed concentration-dependent decreases of MITF, TRP-1, TRP-2 and tyrosinase protein and inhibitory effect of mRNA expression. These findings suggested that extract from PA shell has great potential as a cosmeceutical ingredient with whitening effect.

본 연구는 한국, 중국 등 극동아시아의 온대지역에서 재배되고 우리나라에서는 콩 다음으로 수요가 많은 팥 껍질(Phaseolus angularis shell)의 미백 효과를 검증하여 화장품 소재로서의 가능성을 확인하고자 하였다. 팥 껍질의 효능을 screening 하기 위하여 효소 실험인 tyrosinase 저해활성을 측정한 결과 1,000 ㎍/ml의 농도에서 76.39%의 저해활성을 나타내었다. 이후 멜라노마 세포의 생존율을 측정하여 팥 껍질이 세포에 독성을 미치지 않는 생존율 90% 이상의 농도에서 세포 실험을 진행하였다. 팥 껍질 추출물이 멜라닌 합성에 영향을 미치는 인자인 MITF, TRP-1, TRP-2, tyrosinase 단백질 및 mRNA 발현 억제 효과를 측정한 결과 모든 인자에서 발현량이 감소하였으며 대조군으로 사용된 kojic acid와 비교하였을 때 발현 정도가 유의하거나 더 감소한 것을 확인할 수 있었다. 이러한 결과, 팥 껍질 추출물의 미백 활성이 우수하다는 것을 확인할 수 있었으며 이는 미백 기능성화장품 소재로서 활용 가능성이 있을 것으로 사료된다.

Keywords

References

  1. Han JS. 2013. Effect of the fermented pine needle extract antiskin aging. Ph.D. Thesis, Konkuk University of Korea.
  2. Lee SY. 2011. The effect of placenta extract and MTS (microneedle therapy system) on whitening effect and light wrinkles improvement. M.D. Thesis, Konkuk University of Korea.
  3. Park KC. 1999. Biology of melanocytes and melanogenesis. J. Soc. Cosmet. Sci. Korea 25: 45-57.
  4. Park HJ, Park KK, Hwang JK, Chung WY, Lee SK. 2011. Inhibitory effect of prunus persica flesh extract (PPFE) on melanogenesis through the microphthalmia-associated transcription factor (MITF)-mediated pathway. J. Nat. Prod. Sci. 17: 26-32.
  5. Olivares C, Solano F. 2009. New insights into the active site structure and catalytic mechanism of tyrosinase and its related proteins. Pigment Cell Melanoma Res. 22: 750-760. https://doi.org/10.1111/j.1755-148X.2009.00636.x
  6. Rodriguez-Lopez JN, Tudela J, Varon R, Garcia-Carmona F, Garcia-Canovas F. 1992. Analysis of a kinetic model for melanin biosynthesis pathway. J. Biol. Chem. 267: 3801-3810. https://doi.org/10.1016/S0021-9258(19)50597-X
  7. Chakraborty A, Slominski A, Ermak G, Hwang J, Pawelek J. 1995. Ultraviolet B and melanocyte-stimulating hormone (MSH) stimulate mRNA production for a MSH receptors and proopiomelanocortin-derived peptides in mouse melanoma cells and transformed keratinocytes. J. Invest. Dermatol. 105: 655-659. https://doi.org/10.1111/1523-1747.ep12324134
  8. Im S, Moro O, Peng F, Medrano EE, Cornelius J, Babcock G, et al. 1998. Activation of the cyclic AMP pathway by alpha-melanotropin mediates the response of human melanocytes to ultraviolet B radiation. Cancer Res. 58: 47-54.
  9. Lin CB, Babiarz L, Liebel F, Roydon Price E, Kizoulis M, Gendimenico GJ, et al. 2002. Modulation of microphthalmia-associated transcription factor gene expression alters skin pigmentation. J. Invest. Dermatol. 119: 1330-1340. https://doi.org/10.1046/j.1523-1747.2002.19615.x
  10. Luger TA, Scholzen T, Grabbe S. 1997. The role of alpha-melanocyte-stimulating hormone in cutaneous biology. J. Investig. Dermatol. Symp. Proc. 2: 87-93. https://doi.org/10.1038/jidsymp.1997.17
  11. Luger TA, Scholzen T, Grabbe S. 1997. The role of alpha-melanocyte-stimulating hormone in cutaneous biology. J. Invest. Dermatol. Symp. Proc. 2: 87-93. https://doi.org/10.1038/jidsymp.1997.17
  12. Yasumoto K, Yokoyama K, Takahashi K, Tomita Y, Shibahara S. 1997. Functional analysis of microphthalmia-associated transcription factor in pigment cell-specific transcription of the human tyrosinase family genes. J. Biol. Chem. 272: 503-509. https://doi.org/10.1074/jbc.272.1.503
  13. Debacq-Chainiaux F, Borlon C, Pascal T, Royer V, Eliaers F, Ninane N, et al. 2005. Repeated exposure of human skin fibroblasts to UVB at subcytotoxic level trigger premature senescence through the TGF-β1 signaling pathway. J. Cell Sci. 118: 743-758. https://doi.org/10.1242/jcs.01651
  14. Rho CW, Son SY, Hong ST, Lee KH, Ryu IM. 2003. A gronomic characters of Korean adzuki beans (Vigna angularis (Willd.) Ohwi & Ohashi). Korean J. Plant. Res. 16: 147-154.
  15. Kang MH. 1985. Growth inhibition of rats fed raw or heated Korean beans and the effect of methionine or protein supplementation. Korean J. Nutr. Soc. 18: 126-138.
  16. Kang MH, Kim YH, Lee SR. 1980. Trypsin inhibitor and hemagglutinating activities of some minor beans in Korea. Korean J. Food Sci. Technol. 12: 24-33.
  17. Yagi A, Kanbara T, Morinobu N. 1986. Inhibition of mushroomtyrosinase by aloe extract. Planta Med. 53: 515-517. https://doi.org/10.1055/s-2006-962798
  18. Carmichael J, DeGraff WG, Gazdar AF, Minna JD, Mitchell HB. 1987. Evaluation of a tetrazolium based semiautomated colorimetric assay: assessment of chemosensitivity testing. Cancer Res. 47: 936-942.
  19. Kwak CG. 2009. Analysis on the contents and tyrosinase inhibitory effect of Calystegia japonica. M.D. Thesis, Daegu haany University of Korea.