Acknowledgement
This work was supported by a grant from Pukyong National University (2021).
References
- D'Amico S, Collins T, Marx JC, Feller G, Gerday C. 2006. Psychrophilic microorganisms: challenges for life. EMBO Rep. 7: 385-389. https://doi.org/10.1038/sj.embor.7400662
- Gerday C, Aittaleb M, Bentahir M, Chessa JP, Claverie P, Collins T, et al. 2000. Cold-adapted enzymes: from fundamentals to biotechnology. Trends Biotechnol. 18: 103-107. https://doi.org/10.1016/S0167-7799(99)01413-4
- Struvay C, Feller G. 2012. Optimization to low temperature activity in psychrophilic enzymes. Int. J. Mol. Sci. 13: 11643-11665. https://doi.org/10.3390/ijms130911643
- De Maayer P, Anderson D, Cary C, Cowan DA. 2014. Some like it cold: understanding the survival strategies of psychrophiles. EMBO Rep. 15: 508-517. https://doi.org/10.1002/embr.201338170
- Feller G. 2003. Molecular adaptations to cold in psychrophilic enzymes. Cell Mol. Life Sci. 60: 648-662. https://doi.org/10.1007/s00018-003-2155-3
- Santiago M, Ramirez-Sarmiento CA, Zamora RA, Parra LP. 2016. Discovery, molecular mechanisms, and industrial applications of cold-active enzymes. Front. Microbiol. 7: 1408. https://doi.org/10.3389/fmicb.2016.01408
- Siddiqui KS, Cavicchioli R. 2006. Cold-adapted enzymes. Annu. Rev. Biochem. 75: 403-433. https://doi.org/10.1146/annurev.biochem.75.103004.142723
- Isaksen GV, Aqvist J, Brandsdal BO. 2014. Protein surface softness is the origin of enzyme cold-adaptation of trypsin. PLoS Comput. Biol. 10: e1003813. https://doi.org/10.1371/journal.pcbi.1003813
- Bjelic S, Brandsdal BO, Aqvist J. 2008. Cold adaptation of enzyme reaction rates. Biochemistry 47: 10049-10057. https://doi.org/10.1021/bi801177k
- Socan J, Purg M, Aqvist J. 2020. Computer simulations explain the anomalous temperature optimum in a cold-adapted enzyme. Nat. Commun. 11: 2644. https://doi.org/10.1038/s41467-020-16341-2
- Feller G. 2013. Psychrophilic enzymes: from folding to function and biotechnology. Scientifica (Cairo) 2013: 512840. https://doi.org/10.1155/2013/512840
- Herrmann KM, Weaver LM. 1999. The shikimate pathway. Annu. Rev. Plant Physiol. Plant Mol. Biol. 50: 473-503. https://doi.org/10.1146/annurev.arplant.50.1.473
- Steinrucken HC, Amrhein N. 1980. The herbicide glyphosate is a potent inhibitor of 5-enolpyruvyl-shikimic acid-3-phosphate synthase. Biochem. Biophys. Res. Commun. 94: 1207-1212. https://doi.org/10.1016/0006-291X(80)90547-1
- Lee JH, Choi JM, Kim HJ. 2017. Crystal structure of 5-enolpyruvylshikimate-3-phosphate synthase from a psychrophilic bacterium, Colwellia psychrerythraea 34H. Biochem. Biophys. Res. Commun. 492: 500-506. https://doi.org/10.1016/j.bbrc.2017.08.063
- Funke T, Yang Y, Han H, Healy-Fried M, Olesen S, Becker A, et al. 2009. Structural basis of glyphosate resistance resulting from the double mutation Thr97 -> Ile and Pro101 -> Ser in 5-enolpyruvylshikimate-3-phosphate synthase from Escherichia coli. J. Biol. Chem. 284: 9854-9860. https://doi.org/10.1074/jbc.M809771200
- Nugroho WS, Kim DW, Han JC, Hur YB, Nam SW, Kim HJ. 2016. Cloning, expression, and characterization of a cold-adapted shikimate kinase from the psychrophilic bacterium Colwellia psychrerythraea 34H. J. Microbiol. Biotechnol. 26: 2087-2097. https://doi.org/10.4014/jmb.1608.08049
- Steinrucken HC, Amrhein N. 1984. 5-Enolpyruvylshikimate-3-phosphate synthase of Klebsiella pneumoniae. 1. Purification and properties. Eur. J. Biochem. 143: 341-349. https://doi.org/10.1111/j.1432-1033.1984.tb08378.x
- Xu Y, Feller G, Gerday C, Glansdorff N. 2003. Metabolic enzymes from psychrophilic bacteria: challenge of adaptation to low temperatures in ornithine carbamoyltransferase from Moritella abyssi. J. Bacteriol. 185: 2161-2168. https://doi.org/10.1128/JB.185.7.2161-2168.2003
- Merabet EK, Walker MC, Yuen HK, Sikorski JA. 1993. Differential scanning calorimetric study of 5-enolpyruvoyl shikimate-3- phosphate synthase and its complexes with shikimate-3-phosphate and glyphosate: irreversible thermal transitions. Biochim. Biophys. Acta 1161: 272-278. https://doi.org/10.1016/0167-4838(93)90224-F
- Eschenburg S, Healy ML, Priestman MA, Lushington GH, Schonbrunn E. 2002. How the mutation glycine96 to alanine confers glyphosate insensitivity to 5-enolpyruvyl shikimate-3-phosphate synthase from Escherichia coli. Planta 216: 129-135. https://doi.org/10.1007/s00425-002-0908-0
- Yi S-Y, Cui Y, Zhao Y, Liu Z-D, Lin Y-J, Zhou F. 2016. A novel naturally occurring class I 5-enolpyruvylshikimate-3-phosphate synthase from Janibacter sp. confers high glyphosate tolerance to rice. Sci. Rep. 6: 19104. https://doi.org/10.1038/srep19104
- Cao G, Liu Y, Zhang S, Yang X, Chen R, Zhang Y, et al. 2012. A novel 5-enolpyruvylshikimate-3-phosphate synthase shows high glyphosate tolerance in Escherichia coli and tobacco plants. PLoS One 7: e38718. https://doi.org/10.1371/journal.pone.0038718
- Duncan K, Lewendon A, Coggins JR. 1984. The purification of 5-enolpyruvylshikimate 3-phosphate synthase from an overproducing strain of Escherichia coli. FEBS Lett. 165: 121-127. https://doi.org/10.1016/0014-5793(84)80027-7
- Priestman MA, Healy ML, Funke T, Becker A, Schonbrunn E. 2005. Molecular basis for the glyphosate-insensitivity of the reaction of 5-enolpyruvylshikimate 3-phosphate synthase with shikimate. FEBS Lett. 579: 5773-5780. https://doi.org/10.1016/j.febslet.2005.09.066
- Hoyoux A, Blaise V, Collins T, D'Amico S, Gratia E, Huston AL, et al. 2004. Extreme catalysts from low-temperature environments. J. Biosci. Bioeng. 98: 317-330. https://doi.org/10.1016/S1389-1723(04)00290-7
- Somero GN. 2004. Adaptation of enzymes to temperature: searching for basic "strategies". Comp. Biochem. Physiol. B Biochem. Mol. Biol. 139: 321-333. https://doi.org/10.1016/j.cbpc.2004.05.003