DOI QR코드

DOI QR Code

비정형 데이터를 이용한 ICO(Initial Coin Offering) 정량적 평가 방법에 대한 연구

A Study on the Quantitative Evaluation of Initial Coin Offering (ICO) Using Unstructured Data

  • 이한솔 (아주대학교 e-비즈니스학과) ;
  • 안상호 (아주대학교 e-비즈니스학과) ;
  • 강주영 (아주대학교 e-비즈니스학과)
  • 투고 : 2022.03.10
  • 심사 : 2022.05.31
  • 발행 : 2022.06.30

초록

기업공개(IPO)는 투자자 보호를 위한 법적 테두리가 마련되어 있으며, 다양한 정량적 평가 요소가 존재하기 때문에 객관적인 분석이 가능하며 다양한 연구가 수행되어 왔다. 또한, 크라우드펀딩 역시 투자자 보호를 위한 법적 제도와 무분별한 펀딩을 방지하기 위한 여러 장치가 마련되어 있다. 반면에 최근 각광받는 블록체인 기반의 암호화폐 백서(ICO)는 투자자를 보호할 법적 수단과 기준이 모호하며 ICO를 객관적으로 평가하기 위한 정량적 평가 방법이 미흡한 상황이다. 따라서 본 연구는 ICO의 사기 여부를 탐지하기 위해 온라인상 공개된 ICO 백서를 수집하고 텍스트 임베딩 기법인 BERT에 기반한 ICO 사기 예측을 수행하였고 기존의 Random Forest 머신러닝 기법과 비교하여 정량적 방법으로 사기 탐지가 가능함을 보였다. 최종적으로 본 연구는 비정형 데이터에 기반하여 ICO의 사기 여부를 판단할 수 있는 정량적 접근 방법론의 활용 가능성을 제시함으로써 정량적 방법에 기초한 ICO 사기 탐지 연구에 기여할 수 있을 것으로 기대된다

Initial public offering (IPO) has a legal framework for investor protection, and because there are various quantitative evaluation factors, objective analysis is possible, and various studies have been conducted. In addition, crowdfunding also has several devices to prevent indiscriminate funding as the legal system for investor protection. On the other hand, the blockchain-based cryptocurrency white paper (ICO), which has recently been in the spotlight, has ambiguous legal means and standards to protect investors and lacks quantitative evaluation methods to evaluate ICOs objectively. Therefore, this study collects online-published ICO white papers to detect fraud in ICOs, performs ICO fraud predictions based on BERT, a text embedding technique, and compares them with existing Random Forest machine learning techniques, and shows the possibility on fraud detection. Finally, this study is expected to contribute to the study of ICO fraud detection based on quantitative methods by presenting the possibility of using a quantitative approach using unstructured data to identify frauds in ICOs.

키워드

과제정보

이 논문은 2020년 대한민국 교육부와 한국연구재단의 지원을 받아 수행된 연구임 (NRF-2020S1A5A2A01042616)

참고문헌

  1. Espinel. V., Deep shift, technology tipping points and societal impact, New York: World Economic Forum-Global Agenda Council on the Future of Software & Society, pp. 24, 2015.
  2. Venegas, P., "Initial coin offering (ICO) risk, value and cost in blockchain trustless crypto markets," Value and Cost in Blockchain Trustless Crypto Markets, Jan. 2017.
  3. Hahn, C. and A. Wons, "Initial Coin Offering (ICO): Unternehmensfinanzierung auf Basis der Blockchain-Technologie", Springer. 2018
  4. Zetzsche, D.A., et al., "The ICO Gold Rush: It's a scam, it's a bubble, it's a super challenge for regulators", University of Luxembourg Law Working Paper, 2017.
  5. Thomas, J., "Big risks in ICO market: flawed token valuations, unclear regulations, heightened hacker attention and congested networks". 2018.
  6. 윤형석, 일확천금의 함정, 암호화폐 ICO 사기 사례". 2018.
  7. 홍기훈, ICO의 이해, 한국금융연구원, pp. 1-171., 2018
  8. MOXOTO, Ana Claudia De; MELO, Paulo; SOUKIAZES, Elias. "Initial Coin Offering (ICO): a systematic review of the literature". In: Proceedings of the 54th Hawaii International Conference on System Sciences.p. 4177. 2021.
  9. 한국블록체인학회, 블록체인 분석평가기준 가이드라인, 2018
  10. FINMA, Guidelines for enquiries regarding the regulatory framework for initial coin of erings (ICOs), 2018.
  11. Euler, T., "The Token Classification Framework: A multi-dimensional tool for understanding and classifying crypto tokens". (2018) http://www.untitled-inc.com/the-token-classification-framework-a-multi-dimensional-tool-for-understanding-and-classifying-crypto-tokens/ (accessed May., 24, 2022)
  12. Hartmann, F., X. Wang, and M.I. Lunesu. "Evaluation of initial cryptoasset offerings: the state of the practice," International Workshop on Blockchain Oriented Software Engineering (IWBOSE), 2018.
  13. 원종현, ICO의 현황과 과제, 국회입법조사처. 2018.
  14. Li, J. and W. Mann, "Initial coin offering and platform building," SSRN Electronic Journal, pp. 1-56, 2018.
  15. Tao, J., A.V. Deokar, and O.F. El-Gayar. "An ontology-based information extraction (OBIE) framework for analyzing initial public offering (IPO) prospectus," 47th Hawaii International Conference on System Sciences, 2014.
  16. Levy, O. and Y. Goldberg, "Neural word embedding as implicit matrix factorization". Advances in neural information processing systems, 2014.
  17. Grover, A. and J. Leskovec. "node2vec: Scalable feature learning for networks," Proceedings of the 22nd ACM SIGKDD international conference on Knowledge discovery and data mining, 2016.
  18. Bajo, E. and C. Raimondo, "Media sentiment and IPO underpricing," Journal of Corporate Finance, Vol. 46, pp. 139-153, 2017. https://doi.org/10.1016/j.jcorpfin.2017.06.003
  19. Guldiken, O., et al., "The impact of media coverage on IPO stock performance," Journal of Business Research, Vol. 72, pp. 24-32, 2017 https://doi.org/10.1016/j.jbusres.2016.11.007
  20. Tsukioka, Y., J. Yanagi, and T. Takada, "Investor sentiment extracted from internet stock message boards and IPO puzzles". International Review of Economics & Finance, Vol. 56, pp. 205-217. 2018. https://doi.org/10.1016/j.iref.2017.10.025
  21. Hartmann, F., X. Wang, and M.I. Lunesu, "A hierarchical structure model of success factors for (blockchain-based) crowdfunding," Blockchain and Web 3.0. Routledge, pp. 270-308. 2019.
  22. Hartmann, F., Grottolo, G., Wang, X., & Lunesu, M. I. "Alternative fundraising: success factors for blockchain-based vs. conventional crowdfunding," IEEE international workshop on blockchain oriented software engineering (IWBOSE). IEEE, Feb. 2019.
  23. Moran Ofir, Ido Sadeh., "ICO vs IPO: Empirical Findings, Information Asymmetry and the Appropriate Regulatory Framework," Vanderbilt Journal of Transnational Law, Mar. 2019
  24. Taekeun Hong, Jeongin Kim, Juhyun Shin, "A User Sentiment Classification Using Instagram image and text Analysis," Smart Media Journal, Vol. 5, No. 1, pp. 61-68, Mar. 2016
  25. Mu Moung Cho Han, Yang Sok Kim, Choong Kwon Lee, "Analysis of News Regarding New Southeastern Airport Using Text Mining Techniques," Smart Media Journal, Vol. 6, No. 1, pp. 48-54, Mar. 2017
  26. Mu Moung Cho Han, Yangsok Kim, Choong Kwon Lee, "Analysis of the Relations between Social Issues and Prices Using Text Mining - Avian Influenza and Egg Prices -," Smart Media Journal, Vol. 7, No. 1, pp. 45-51, Mar. 2018 https://doi.org/10.30693/SMJ.2018.7.1.45
  27. Aizawa, A., "An information-theoretic perspective of tf-idf measures," Information Processing & Management, Vol. 39, No. 1, pp. 45-65. Jan. 2003. https://doi.org/10.1016/S0306-4573(02)00021-3
  28. Kam. H.T., "Random decision forest," Proceedings of the 3rd international conference on document analysis and recognition, Montreal, Canada, Aug. 1995.
  29. Chen, Y., et al., "Large group activity security risk assessment and risk early warning based on random forest algorithm," Pattern Recognition Letters, Vol. 144, pp. 1-5, Apr. 2021. https://doi.org/10.1016/j.patrec.2021.01.008
  30. Chen, T. and C. Guestrin. "Xgboost: A scalable tree boosting system". Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining, pp. 785-798, California, USA, Aug. 2016.
  31. Devlin, J., et al., "Bert: Pre-training of deep bidirectional transformers for language understanding," arXiv 1810.04805, 2018.
  32. Abasa., "How to Evaluate Crypto Projects", (2021) https://david-brain.medium.com/how-to-evaluate-crypto-projects-b6606b658ac0 (accessed May., 24, 2022)