• Title/Summary/Keyword: Fraud detection

Search Result 134, Processing Time 0.022 seconds

An Empirical Study on the Development of Behavior Model of Insurance Fraud (보험사기행동모형 개발에 관한 실증적 연구)

  • Lee, Myung-Jin;Gim, Gwang-Yong
    • Journal of Information Technology Services
    • /
    • v.6 no.2
    • /
    • pp.1-18
    • /
    • 2007
  • Many researches have been done in insurance fraud as the amount and frequency of insurance fraud have been increasing continuously. In particular, the development of insurance fraud detection system using large database management techniques including data mining or link analysis based on visual method have been the main research topic in insurance fraud. However, this kinds of detection system were very ineffective to find unintentional insurance fraud happened by accident even though it was so good to find intentional and organized crime insurance fraud. Therefore, this research suggests insurance fraud as an ethical decision making and applies TPB(Theory of Planned Behavior) for the finding of reasons and prevention strategies of unintentional insurance fraud happened by accident. The results of research show that TPB is very appropriate model to explain the behavior of insurance fraud and that insurance agents force to do insurance fraud as affecting perceived behavior control. Therefore, education and pubic relations for insurance fraud are very effective for preventing insurance fraud and developing insurance service industry.

Role of Big Data Technology and Whistleblowing System in Distribution of Fraud Detection

  • Idrawahyuni;Gagaring PAGALUNG;Darwis SAID;Grace T. PONTOH
    • Journal of Distribution Science
    • /
    • v.22 no.9
    • /
    • pp.1-12
    • /
    • 2024
  • Purpose: The purpose of the research is to find out and analyze the direct influence of forensic audits and auditor integrity on Fraud Detection and indirect effects through big data technology and whistleblowing systems in Indonesian BPK. The research method used is a survey research method. Surveys are primary data collection methods by asking 254 individual respondents. The unit of analysis is an individual, namely the BPK RI auditors. Results of this study found a forensic audit has a positive and significant effect on fraud detection, Auditor Integrity has a positive and significant effect on Fraud Detection; and forensic Audit has a positive and significant effect on big data technology, A forensic Audit has a positive and significant effect on the whistleblowing system, Integrity auditor has a positive and significant effect on big data technology, The whistleblowing system has a positive and significant effect on fraud detection, Big data technology has a positive and significant effect on fraud detection, The whistleblowing system has a positive and significant effect on fraud detection. Similar to how we used cross-sectional data, future research is urged to use an interview-based qualitative approach to avoid typical technique bias.

A Study on the Application of Outlier Analysis for Fraud Detection: Focused on Transactions of Auction Exception Agricultural Products (부정 탐지를 위한 이상치 분석 활용방안 연구 : 농수산 상장예외품목 거래를 대상으로)

  • Kim, Dongsung;Kim, Kitae;Kim, Jongwoo;Park, Steve
    • Journal of Intelligence and Information Systems
    • /
    • v.20 no.3
    • /
    • pp.93-108
    • /
    • 2014
  • To support business decision making, interests and efforts to analyze and use transaction data in different perspectives are increasing. Such efforts are not only limited to customer management or marketing, but also used for monitoring and detecting fraud transactions. Fraud transactions are evolving into various patterns by taking advantage of information technology. To reflect the evolution of fraud transactions, there are many efforts on fraud detection methods and advanced application systems in order to improve the accuracy and ease of fraud detection. As a case of fraud detection, this study aims to provide effective fraud detection methods for auction exception agricultural products in the largest Korean agricultural wholesale market. Auction exception products policy exists to complement auction-based trades in agricultural wholesale market. That is, most trades on agricultural products are performed by auction; however, specific products are assigned as auction exception products when total volumes of products are relatively small, the number of wholesalers is small, or there are difficulties for wholesalers to purchase the products. However, auction exception products policy makes several problems on fairness and transparency of transaction, which requires help of fraud detection. In this study, to generate fraud detection rules, real huge agricultural products trade transaction data from 2008 to 2010 in the market are analyzed, which increase more than 1 million transactions and 1 billion US dollar in transaction volume. Agricultural transaction data has unique characteristics such as frequent changes in supply volumes and turbulent time-dependent changes in price. Since this was the first trial to identify fraud transactions in this domain, there was no training data set for supervised learning. So, fraud detection rules are generated using outlier detection approach. We assume that outlier transactions have more possibility of fraud transactions than normal transactions. The outlier transactions are identified to compare daily average unit price, weekly average unit price, and quarterly average unit price of product items. Also quarterly averages unit price of product items of the specific wholesalers are used to identify outlier transactions. The reliability of generated fraud detection rules are confirmed by domain experts. To determine whether a transaction is fraudulent or not, normal distribution and normalized Z-value concept are applied. That is, a unit price of a transaction is transformed to Z-value to calculate the occurrence probability when we approximate the distribution of unit prices to normal distribution. The modified Z-value of the unit price in the transaction is used rather than using the original Z-value of it. The reason is that in the case of auction exception agricultural products, Z-values are influenced by outlier fraud transactions themselves because the number of wholesalers is small. The modified Z-values are called Self-Eliminated Z-scores because they are calculated excluding the unit price of the specific transaction which is subject to check whether it is fraud transaction or not. To show the usefulness of the proposed approach, a prototype of fraud transaction detection system is developed using Delphi. The system consists of five main menus and related submenus. First functionalities of the system is to import transaction databases. Next important functions are to set up fraud detection parameters. By changing fraud detection parameters, system users can control the number of potential fraud transactions. Execution functions provide fraud detection results which are found based on fraud detection parameters. The potential fraud transactions can be viewed on screen or exported as files. The study is an initial trial to identify fraud transactions in Auction Exception Agricultural Products. There are still many remained research topics of the issue. First, the scope of analysis data was limited due to the availability of data. It is necessary to include more data on transactions, wholesalers, and producers to detect fraud transactions more accurately. Next, we need to extend the scope of fraud transaction detection to fishery products. Also there are many possibilities to apply different data mining techniques for fraud detection. For example, time series approach is a potential technique to apply the problem. Even though outlier transactions are detected based on unit prices of transactions, however it is possible to derive fraud detection rules based on transaction volumes.

A study on the occupational fraud symptoms and detection methods for managing human element vulnerability in financial industry security (금융산업보안상 인적보안 취약요소인 업무부정의 발생징후와 적발방법에 관한 연구)

  • Suh, Joon-Bae;Shim, Hee-Sub
    • Korean Security Journal
    • /
    • no.53
    • /
    • pp.37-59
    • /
    • 2017
  • This study aims to contribute to the early detection of occupational fraud in the Korean financial industry by analyzing fraud symptoms. Firstly, the definition, cause of occupational fraud, and fraud symptoms were discussed through literature review. Secondly, survey data were collected from the employees of the financial industry such as bank, insurance, and securities companies to conduct statistical analysis. The result of analysis showed that the symptoms of 'excessive stock investment' and 'unsettled life style' were statistically significant predictors of fraud detection experience. Plus, 'tips and complaints' were the most frequent method for detecting occupational fraud in the Korean financial industry. The financial institutions can minimize the loss of occupational fraud by early detection through educating their employees and vendors on these important symptoms of occupational fraud.

  • PDF

Hybrid Fraud Detection Model: Detecting Fraudulent Information in the Healthcare Crowdfunding

  • Choi, Jaewon;Kim, Jaehyoun;Lee, Ho
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.3
    • /
    • pp.1006-1027
    • /
    • 2022
  • In the crowdfunding market, various crowdfunding platforms can offer founders the possibilities to collect funding and launch someone's next campaign, project or events. Especially, healthcare crowdfunding is a field that is growing rapidly on health-related problems based on online platforms. One of the largest platforms, GoFundMe, has raised US$ 5 billion since 2010. Unfortunately, while providing crucial help to care for many people, it is also increasing risk of fraud. Using the largest platform of crowdfunding market, GoFundMe, we conduct an exhaustive search of detection on fraud from October 2016 to September 2019. Data sets are based on 6 main types of medical focused crowdfunding campaigns or events, such as cancer, in vitro fertilization (IVF), leukemia, health insurance, lymphoma and, surgery type. This study evaluated a detect of fraud process to identify fraud from non-fraud healthcare crowdfunding campaigns using various machine learning technics.

A Review of Machine Learning Algorithms for Fraud Detection in Credit Card Transaction

  • Lim, Kha Shing;Lee, Lam Hong;Sim, Yee-Wai
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.9
    • /
    • pp.31-40
    • /
    • 2021
  • The increasing number of credit card fraud cases has become a considerable problem since the past decades. This phenomenon is due to the expansion of new technologies, including the increased popularity and volume of online banking transactions and e-commerce. In order to address the problem of credit card fraud detection, a rule-based approach has been widely utilized to detect and guard against fraudulent activities. However, it requires huge computational power and high complexity in defining and building the rule base for pattern matching, in order to precisely identifying the fraud patterns. In addition, it does not come with intelligence and ability in predicting or analysing transaction data in looking for new fraud patterns and strategies. As such, Data Mining and Machine Learning algorithms are proposed to overcome the shortcomings in this paper. The aim of this paper is to highlight the important techniques and methodologies that are employed in fraud detection, while at the same time focusing on the existing literature. Methods such as Artificial Neural Networks (ANNs), Support Vector Machines (SVMs), naïve Bayesian, k-Nearest Neighbour (k-NN), Decision Tree and Frequent Pattern Mining algorithms are reviewed and evaluated for their performance in detecting fraudulent transaction.

Financial Fraud Detection using Data Mining: A Survey

  • Sudhansu Ranjan Lenka;Bikram Kesari Ratha
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.9
    • /
    • pp.169-185
    • /
    • 2024
  • Due to levitate and rapid growth of E-Commerce, most of the organizations are moving towards cashless transaction Unfortunately, the cashless transactions are not only used by legitimate users but also it is used by illegitimate users and which results in trouncing of billions of dollars each year worldwide. Fraud prevention and Fraud Detection are two methods used by the financial institutions to protect against these frauds. Fraud prevention systems (FPSs) are not sufficient enough to provide fully security to the E-Commerce systems. However, with the combined effect of Fraud Detection Systems (FDS) and FPS might protect the frauds. However, there still exist so many issues and challenges that degrade the performances of FDSs, such as overlapping of data, noisy data, misclassification of data, etc. This paper presents a comprehensive survey on financial fraud detection system using such data mining techniques. Over seventy research papers have been reviewed, mainly within the period 2002-2015, were analyzed in this study. The data mining approaches employed in this research includes Neural Network, Logistic Regression, Bayesian Belief Network, Support Vector Machine (SVM), Self Organizing Map(SOM), K-Nearest Neighbor(K-NN), Random Forest and Genetic Algorithm. The algorithms that have achieved high success rate in detecting credit card fraud are Logistic Regression (99.2%), SVM (99.6%) and Random Forests (99.6%). But, the most suitable approach is SOM because it has achieved perfect accuracy of 100%. But the algorithms implemented for financial statement fraud have shown a large difference in accuracy from CDA at 71.4% to a probabilistic neural network with 98.1%. In this paper, we have identified the research gap and specified the performance achieved by different algorithms based on parameters like, accuracy, sensitivity and specificity. Some of the key issues and challenges associated with the FDS have also been identified.

Fraud detection support vector machines with a functional predictor: application to defective wafer detection problem (불량 웨이퍼 탐지를 위한 함수형 부정 탐지 지지 벡터기계)

  • Park, Minhyoung;Shin, Seung Jun
    • The Korean Journal of Applied Statistics
    • /
    • v.35 no.5
    • /
    • pp.593-601
    • /
    • 2022
  • We call "fruad" the cases that are not frequently occurring but cause significant losses. Fraud detection is commonly encountered in various applications, including wafer production in the semiconductor industry. It is not trivial to directly extend the standard binary classification methods to the fraud detection context because the misclassification cost is much higher than the normal class. In this article, we propose the functional fraud detection support vector machine (F2DSVM) that extends the fraud detection support vector machine (FDSVM) to handle functional covariates. The proposed method seeks a classifier for a function predictor that achieves optimal performance while achieving the desired sensitivity level. F2DSVM, like the conventional SVM, has piece-wise linear solution paths, allowing us to develop an efficient algorithm to recover entire solution paths, resulting in significantly improved computational efficiency. Finally, we apply the proposed F2DSVM to the defective wafer detection problem and assess its potential applicability.

A Survey of Fraud Detection Research based on Transaction Analysis and Data Mining Technique (결제로그 분석 및 데이터 마이닝을 이용한 이상거래 탐지 연구 조사)

  • Jeong, Seong Hoon;Kim, Hana;Shin, Youngsang;Lee, Taejin;Kim, Huy Kang
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.25 no.6
    • /
    • pp.1525-1540
    • /
    • 2015
  • Due to a rapid advancement in the electronic commerce technology, the payment method varies from cash to electronic settlement such as credit card, mobile payment and mobile application card. Therefore, financial fraud is increasing notably for a purpose of personal gain. In response, financial companies are building the FDS (Fraud Detection System) to protect consumers from fraudulent transactions. The one of the goals of FDS is identifying the fraudulent transaction with high accuracy by analyzing transaction data and personal information in real-time. Data mining techniques are providing great aid in financial accounting fraud detection, so it have been applied most extensively to provide primary solutions to the problems. In this paper, we try to provide an overview of the research on data mining based fraud detection. Also, we classify researches under few criteria such as data set, data mining algorithm and viewpoint of research.

Evolutionary Learning of Neural Networks Classifiers for Credit Card Fraud Detection (신용카드 사기 검출을 위한 신경망 분류기의 진화 학습)

  • 박래정
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.11 no.5
    • /
    • pp.400-405
    • /
    • 2001
  • This paper addresses an effective approach of training neural networks classifiers for credit card fraud detection. The proposed approach uses evolutionary programming to trails the neural networks classifiers based on maximization of the detection rate of fraudulent usages on some ranges of the rejection rate, loot minimization of mean square error(MSE) that Is a common criterion for neural networks learning. This approach enables us to get classifier of satisfactory performance and to offer a directive method of handling various conditions and performance measures that are required for real fraud detection applications in the classifier training step. The experimental results on "real"credit card transaction data indicate that the proposed classifiers produces classifiers of high quality in terms of a relative profit as well as detection rate and efficiency.

  • PDF