Deep learning model in water resource and harmful algae fields

수자원과 유해 조류 분야에서의 딥러닝 적용 사례

  • Published : 2022.06.30

Abstract

Keywords

Acknowledgement

본 결과물은 과학기술정보통신부의 재원으로 한국연구재단의 세종과학펠로우쉽 사업(2022R1C1C2003649)의 연구비 지원을 받아 수행되었습니다.

References

  1. Baek, S. S., Pyo, J., Chun, J. A. 2020. Prediction of water level and water quality using a CNN-LSTM combined deep learning approach. Water, 12(12), 3399. https://doi.org/10.3390/w12123399
  2. Baek, S. S., Pyo, J., Kwon, Y., Chun, S. J., Baek, S., Ahn, C. Y., Cho, K. 2021. Deep learning for simulating harmful algal blooms using ocean numerical model. Frontiers in Marine Science, 1446.
  3. Baek, S. S., Kwon, Y. S., Pyo, J., Choi, J., Kim, Y. O., Cho, K. H. 2021. Identification of influencing factors of A. catenella bloom using machine learning and numerical simulation. Harmful Algae, 103, 102007. https://doi.org/10.1016/j.hal.2021.102007
  4. Chen, L. C., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A. L. 2014. Semantic Image Segmentation with Deep Convolutional Nets and Fully Connected Crfs, arXiv preprint arXiv:1412.7062.
  5. Chollet, F. 2018. Deep learning with Python. Manning Publications Co, ISBN 9781617294433.
  6. Ioffe, S., Szegedy, C. 2015. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In International conference on machine learning, 448-456.
  7. Kayhanian, M., Fruchtman, B. D., Gulliver, J. S., Montanaro, C., Ranieri, E., Wuertz, S. 2012. Review of highway runoff characteristics: Comparative analysis and universal implications. Water research, 46(20), 6609-6624. https://doi.org/10.1016/j.watres.2012.07.026
  8. Selvaraju, R. R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D. 2017. Grad-cam: Visual explanations from deep networks via gradient-based localization. In Proceedings of the IEEE international conference on computer vision (pp. 618-626).
  9. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R. 2014. Dropout: a simple way to prevent neural networks from overfitting. The Journal of Machine Learning Research, 15(1), 1929-1958.
  10. LeCun, Y., Bengio, Y., and Hinton, G. 2015. Deep learning. Nature, 521, 436-444. https://doi.org/10.1038/nature14539
  11. Luong, M.-T., Pham, H., Manning, C. D. 2015. Effective approaches to attention-based neural machine translation. arXiv preprint arXiv:1508.04025.
  12. Park, Y., Lee, H. K., Shin, J. K., Chon, K., Kim, S., Cho, K. H., Baek, S. S. 2021. A machine learning approach for early warning of cyanobacterial bloom outbreaks in a freshwater reservoir. Journal of Environmental Management, 288, 112415.
  13. Pyo, J., Park, L. J., Pachepsky, Y., Baek, S. S., Kim, K., Cho, K. H. 2020. Using convolutional neural network for predicting cyanobacteria concentrations in river water. Water Research, 186, 116349. https://doi.org/10.1016/j.watres.2020.116349
  14. Pyo, J., Cho, K. H., Kim, K., Baek, S. S., Nam, G., Park, S. 2021. Cyanobacteria cell prediction using interpretable deep learning model with observed, numerical, and sensing data assemblage. Water Research, 203, 117483. https://doi.org/10.1016/j.watres.2021.117483
  15. Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Rabinovich, A. 2015. Going deeper with convolutions. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 1-9).
  16. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I. 2017. Attention is all you need, 5998-6008.