Browse > Article

Deep learning model in water resource and harmful algae fields  

Jang, Ji-Lee (극지연구소 대기연구본부)
Gwon, Yong-Seong (국립생태원)
Pyo, Jong-Cheol (한국환경연구원)
Baek, Sang-Su (영남대학교 환경공학과)
Publication Information
Water for future / v.55, no.6, 2022 , pp. 62-71 More about this Journal
Keywords
Citations & Related Records
연도 인용수 순위
  • Reference
1 Baek, S. S., Pyo, J., Chun, J. A. 2020. Prediction of water level and water quality using a CNN-LSTM combined deep learning approach. Water, 12(12), 3399.   DOI
2 Baek, S. S., Pyo, J., Kwon, Y., Chun, S. J., Baek, S., Ahn, C. Y., Cho, K. 2021. Deep learning for simulating harmful algal blooms using ocean numerical model. Frontiers in Marine Science, 1446.
3 Baek, S. S., Kwon, Y. S., Pyo, J., Choi, J., Kim, Y. O., Cho, K. H. 2021. Identification of influencing factors of A. catenella bloom using machine learning and numerical simulation. Harmful Algae, 103, 102007.   DOI
4 Chollet, F. 2018. Deep learning with Python. Manning Publications Co, ISBN 9781617294433.
5 Ioffe, S., Szegedy, C. 2015. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In International conference on machine learning, 448-456.
6 Selvaraju, R. R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D. 2017. Grad-cam: Visual explanations from deep networks via gradient-based localization. In Proceedings of the IEEE international conference on computer vision (pp. 618-626).
7 Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R. 2014. Dropout: a simple way to prevent neural networks from overfitting. The Journal of Machine Learning Research, 15(1), 1929-1958.
8 Park, Y., Lee, H. K., Shin, J. K., Chon, K., Kim, S., Cho, K. H., Baek, S. S. 2021. A machine learning approach for early warning of cyanobacterial bloom outbreaks in a freshwater reservoir. Journal of Environmental Management, 288, 112415.
9 Pyo, J., Cho, K. H., Kim, K., Baek, S. S., Nam, G., Park, S. 2021. Cyanobacteria cell prediction using interpretable deep learning model with observed, numerical, and sensing data assemblage. Water Research, 203, 117483.   DOI
10 Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Rabinovich, A. 2015. Going deeper with convolutions. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 1-9).
11 Luong, M.-T., Pham, H., Manning, C. D. 2015. Effective approaches to attention-based neural machine translation. arXiv preprint arXiv:1508.04025.
12 Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I. 2017. Attention is all you need, 5998-6008.
13 Chen, L. C., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A. L. 2014. Semantic Image Segmentation with Deep Convolutional Nets and Fully Connected Crfs, arXiv preprint arXiv:1412.7062.
14 Kayhanian, M., Fruchtman, B. D., Gulliver, J. S., Montanaro, C., Ranieri, E., Wuertz, S. 2012. Review of highway runoff characteristics: Comparative analysis and universal implications. Water research, 46(20), 6609-6624.   DOI
15 LeCun, Y., Bengio, Y., and Hinton, G. 2015. Deep learning. Nature, 521, 436-444.   DOI
16 Pyo, J., Park, L. J., Pachepsky, Y., Baek, S. S., Kim, K., Cho, K. H. 2020. Using convolutional neural network for predicting cyanobacteria concentrations in river water. Water Research, 186, 116349.   DOI