DOI QR코드

DOI QR Code

A Review on Bioactive Compounds from Marine-Derived Chaetomium Species

  • Tian, Yuan (College of Life Science, Shandong First Medical University & Shandong Academy of Medical Sciences) ;
  • Li, Yanling (College of Life Science, Shandong First Medical University & Shandong Academy of Medical Sciences)
  • Received : 2022.01.07
  • Accepted : 2022.05.02
  • Published : 2022.05.28

Abstract

Filamentous marine fungi have proven to be a plentiful source of new natural products. Chaetomium, a widely distributed fungal genus in the marine environment, has gained much interest within the scientific community. In the last 20 years, many potential secondary metabolites have been detected from marine-derived Chaetomium. In this review, we attempt to provide a comprehensive summary of the natural products produced by marine-derived Chaetomium species. A total of 122 secondary metabolites that were described from 2001 to 2021 are covered. The structural diversity of the compounds, along with details of the sources and relevant biological properties are also provided, while the relationships between structures and their bioactivities are discussed. It is our expectation that this review will be of benefit to drug development and innovation.

Keywords

Acknowledgement

This work was supported by the National Natural Science Foundation of China (21602152), Shandong Provincial Natural Science Foundation (ZR2016BB01, ZR2020MH368), Shandong Medical and Health Science and Technology Development Project (202101060623), and finally, Tai'an City Science and Technology Innovation Development Project (2020NS061, 2020NS060).

References

  1. Von Arx JA, Guarro J, Figueras MJ. 1986. The ascomycete genus Chaetomium. Beih. Nova. Hedw. 84: 1-162.
  2. Zhang Q, Li HQ, Zong SC, Gao JM, Zhang AL. 2012. Chemical and bioactive diversities of the genus Chaetomium secondary metabolites. Mini Rev. Med. Chem. 12: 127-148. https://doi.org/10.2174/138955712798995066
  3. Nighat F, Syed AM, Ibrar K, Muneer AQ, Irum S, Amara M, et al. 2016. Chaetomium endophytes: a repository of pharmacologically active metabolites. Acta Physiol. Plant 38: 136. https://doi.org/10.1007/s11738-016-2138-2
  4. Xu GB, Zhang QY, Zhou M. 2018. Review on the secondary metabolites and its biological activities from Chaetomium fungi. Nat. Prod. Res. Dev. 30: 515-525.
  5. Liang HL, Tong ZW, Zhu D. 2018. Secondary metabolites from Chaetomiun globosum and their bioactivities. Nat. Prod. Res. Dev. 30: 702-707.
  6. Shin HJ. 2020. Natural products from marine fungi. Mar. Drugs 18: 230. https://doi.org/10.3390/md18050230
  7. Pang KL, Overy DP, Jones EBG, da Luz Calado M, Burgaud G, Walker AK, et al. 2016. 'Marine fungi'and 'marine-derived fungi'in natural product chemistry research: toward a new consensual definition. Fungal Biol. Rev. 30: 163-175. https://doi.org/10.1016/j.fbr.2016.08.001
  8. Overy DP, Rama T, Oosterhuis R, Walker AK, Pang KL. 2019. The neglected marine fungi, sensu stricto, and their isolation for natural products' discovery. Mar. Drugs 17: 42. https://doi.org/10.3390/md17010042
  9. Schumann J, Hertweck C. 2007. Molecular basis of cytochalasan biosynthesis in fungi: gene cluster analysis and evidence for the involvement of a PKS-NRPS hybrid synthase by RNA silencing. J. Am. Chem. Soc. 129: 9564-9565. https://doi.org/10.1021/ja072884t
  10. Haidle AM, Myers AG. 2004. An enantioselective, modular, and general route to the cytochalasins: Synthesis of L-696,474 and cytochalasin B. Proc. Natl. Acad. Sci. USA 101: 12048-12053. https://doi.org/10.1073/pnas.0402111101
  11. Scherlach K, Boettger D, Remme N, Hertweck C. 2010. The chemistry and biology of cytochalasans. Nat. Prod. Rep. 27: 869-886. https://doi.org/10.1039/b903913a
  12. Skellam E. 2017. The biosynthesis of cytochalasans. Nat. Prod. Rep. 34: 1252-1263. https://doi.org/10.1039/C7NP00036G
  13. Cui CM, Li XM, Li CS, Proksch P, Wang BG. 2010. Cytoglobosins A-G, cytochalasans from a marine-derived endophytic fungus, Chaetomium globosum QEN-14. J. Nat. Prod. 73: 729-733. https://doi.org/10.1021/np900569t
  14. Ge HM, Yan W, Guo ZK, Luo Q, Feng R, Zang LY, et al. 2011. Precursor-directed fungal generation of novel halogenated chaetoglobosins with more preferable immunosuppressive action. Chem. Commun. 47: 2321-2323. https://doi.org/10.1039/c0cc04183a
  15. Zhang Z, Min X, Huang J, Zhong Y, Wu Y, Li X, et al. 2016. Cytoglobosins H and I, new antiproliferative cytochalasans from deepdea-derived fungus Chaetomium globosum. Mar. Drugs 14: 233. https://doi.org/10.3390/md14120233
  16. Guo ZL, Zheng JJ, Cao F, Wang C, Wang CY. 2017. Chemical constituents of the gorgonian-derived fungus Chaetomium globosum. Chem. Nat. Comp. 53: 199-202. https://doi.org/10.1007/s10600-017-1950-2
  17. Qi J, Jiang L, Zhao P, Chen H, Jia X, Zhao L, et al. 2020. Chaetoglobosins and azaphilones from Chaetomium globosum associated with Apostichopus japonicus. Appl. Microbiol. Biotechnol. 104: 1545-1553. https://doi.org/10.1007/s00253-019-10308-0
  18. Luo XW, Gao CH, Lu HM, Wang JM, Su ZQ, Tao HM, et al. 2020. HPLC-DAD-guided isolation of diversified chaetoglobosins from the coral-associated fungus Chaetomium globosum C2F17. Molecules 25: 1237. https://doi.org/10.3390/molecules25051237
  19. Hirose T, Izawa Y, Koyama K, Natori S, Iida K,Yahara I, et al. 1990. Maruyama. Chem. Pharm. Bull., 38: 971-974. https://doi.org/10.1248/cpb.38.971
  20. Minato H, Katayama T, Matsumoto M, Katagiri K, Matsuura S, Sunagawa N, et al. 1973. Chem. Pharm. Bull. 21: 2268-2277. https://doi.org/10.1248/cpb.21.2268
  21. Scherlach K, Boettger D, Remme N, Hertweck C. 2010. The chemistry and biology of cytochalasans. Nat. Prod. Rep. 27: 869-886. https://doi.org/10.1039/b903913a
  22. Flashner M, Rasmussen J, Patwardhan BH, Tanenbaum SW. 1982. Structural features of cytochalasins responsible for Gram-positive bacterial inhibitions. J. Antibiot. 35: 1345-1350. https://doi.org/10.7164/antibiotics.35.1345
  23. Jiang CS, Guo YW. 2011. Epipolythiodioxopiperazines from fungi: chemistry and bioactivities. Mini Rev. Med. Chem. 11: 728-745. https://doi.org/10.2174/138955711796355276
  24. Zhu M, Zhang X, Huang X, Wang H, Anjum K, Gu Q, et al. 2020. Irregularly bridged epipolythiodioxopiperazines and related analogues: sources, structures, and biological activities. J. Nat. Prod. 83: 2045-2053. https://doi.org/10.1021/acs.jnatprod.9b01283
  25. Gomes NGM, Pereira RB, Andrade PB, Valentao P. 2019. Double the chemistry, double the fun: structural diversity and biological activity of marine-derived diketopiperazine dimers. Mar. Drugs 17: 551. https://doi.org/10.3390/md17100551
  26. Yun K, Khong TT, Leutou AS, Kim GD, Hong J, Lee CH, et al. 2016. Cristazine, a new cytotoxic dioxopiperazine alkaloid from the mudflat-sediment-derived fungus Chaetomium cristatum. Chem. Pharm. Bull. 64: 59-62. https://doi.org/10.1248/cpb.c15-00525
  27. Jo MJ, Patil MP, Jung HI, Seo YB, Lim HK, Son BW, et al. 2019. Cristazine, a novel dioxopiperazine alkaloid, induces apoptosis via the death receptor pathway in A431 cells. Drug Dev. Res. 80: 504-512. https://doi.org/10.1002/ddr.21527
  28. Mcinnes AG, Taylor A. Walter JA. 1976. The structure of chetomin. J. Am. Chem. Soc. 98: 6741-6741. https://doi.org/10.1021/ja00437a074
  29. Staab A, Loeffler J, Said HM, Diehlmann D, Katzer A, Beyer M, et al. 2007. Effects of HIF-1 inhibition by chetomin on hypoxiarelated transcription and radiosensitivity in HT1080 human fibrosarcoma cells. BMC Cancer 7: 213. https://doi.org/10.1186/1471-2407-7-213
  30. Viziteu E, Grandmougin C, Goldschmidt H, Seckinger A, Hose D, Klein B, et al. 2016. Chetomin, targeting HIF-1α/p300 complex, exhibits antitumour activity in multiple myeloma. Br. J. Cancer 114: 519-523. https://doi.org/10.1038/bjc.2016.20
  31. Min S, Wang X, Du Q, Gong H, Yang Y, Wang T, et al. 2020. Chetomin, a Hsp90/HIF1α pathway inhibitor, effectively targets lung cancer stem cells and non-stem cells. Cancer Biol. Ther. 21: 698-708. https://doi.org/10.1080/15384047.2020.1763147
  32. Dewangan J, Srivastava S, Mishra S, Pandey PK, Divakar A, Rath SK. 2018. Chetomin induces apoptosis in human triple-negative breast cancer cells by promoting calcium overload and mitochondrial dysfunction. Biochem. Biophys. Res. Commun. 495: 1915-1921. https://doi.org/10.1016/j.bbrc.2017.11.199
  33. Kim KS, Cui X, Lee DS, Sohn JH, Yim JH, Kim YC, et al. 2013. Anti-inflammatory effect of neoechinulin a from the marine fungus Eurotium sp. SF-5989 through the suppression of NF-κB and p38 MAPK pathways in lipopolysaccharide-stimulated RAW264.7 macrophages. Molecules 18: 13245-13259. https://doi.org/10.3390/molecules181113245
  34. Alhadrami HA, Burgio G, Thissera B, Orfali R, Jiffri SE, Yaseen M, et al. 2022. Neoechinulin A as a promising SARS-CoV-2 Mpro inhibitor: in vitro and in silico study showing the ability of simulations in discerning active from inactive enzyme inhibitors. Mar. Drugs 20: 163. https://doi.org/10.3390/md20030163
  35. Maruyama K, Ohuchi T, Yoshida K, Shibata Y, Sugawara F, Arai T. 2004. Protective properties of Neoechinulin A against SIN-1-induced neuronal cell death. J. Biochem. 136: 81-87. https://doi.org/10.1093/jb/mvh103
  36. Sasaki-Hamada S, Hoshi M, Niwa Y, Ueda Y, Kokaji A, Kamisuki S. 2016. Neoechinulin A induced memory improvements and antidepressant-like effects in mice. Prog. Neuropsychopharmacol. Biol. Psychiatry 71: 155-161. https://doi.org/10.1016/j.pnpbp.2016.08.002
  37. Kimoto K, Aoki T, Shibata Y, Kamisuki S, Sugawara F, Kuramochi K. 2007. Structure-activity relationships of neoechinulin A analogues with cytoprotection against peroxynitrite-induced PC12 cell death. J. Antibiot. 60: 614-621. https://doi.org/10.1038/ja.2007.79
  38. Singh TP, Singh OM. 2018. Recent progress in biological activities of indole and indole alkaloids. Mini-Rev. Med. Chem. 18: 9-25.
  39. Li SM. 2010. Prenylated indole derivatives from fungi: Structure diversity, biological activities, biosynthesis and chemoenzymatic synthesis. Nat. Prod. Rep. 27: 57-78. https://doi.org/10.1039/B909987P
  40. Kochanowska-Karamyan AJ, Hamann MT. 2010. Marine indole alkaloids: potential new drug leads for the control of depression and anxiety. Chem. Rev. 110: 4489-4497. https://doi.org/10.1021/cr900211p
  41. Netz N, Opatz T. 2015. Marine indole alkaloids. Mar. Drugs 13: 4814-4914. https://doi.org/10.3390/md13084814
  42. Yan W, Ge HM, Wang G, Jiang N, Mei YN, Jiang R, et al. 2014. Pictet-Spengler reaction-based biosynthetic machinery in fungi. Proc. Natl. Acad. Sci. USA 111: 18138-18143. https://doi.org/10.1073/pnas.1417304111
  43. Yan W, Zhao SS, Ye YH, Zhang YY, Zhang Y, Xu JY, et al. 2019. Generation of indoles with agrochemical significance through biotransformation by Chaetomium globosum. J. Nat. Prod. 82: 2132-2137. https://doi.org/10.1021/acs.jnatprod.8b01101
  44. Osmanova N, Schultze W, Ayoub N. 2010. Azaphilones: a class of fungal metabolites with diverse biological activities. Phytochem. Rev. 9: 315-342. https://doi.org/10.1007/s11101-010-9171-3
  45. Luo X, Lin X, Tao H, Wang J, Li J, Yang B, et al. 2018. J. Nat. Prod. 81: 934-941. https://doi.org/10.1021/acs.jnatprod.7b01053
  46. Gao JM, Yang SX, Qin JC. 2013. Azaphilones: chemistry and biology. Chem. Rev. 113: 4755-4811. https://doi.org/10.1021/cr300402y
  47. Yamada T, Doi M, Yasuhide M, Shigeta H, Muroga Y, Hosoe S, et al. 2008. Absolute stereostructures of cytotoxic metabolites, chaetomugilins A-C, produced by a Chaetomium species separated from a marine fish. Tetrahedron Lett. 49: 4192-4195. https://doi.org/10.1016/j.tetlet.2008.04.060
  48. Yasuhide M, Yamada T, Numata A, Tanaka R. 2008. Chaetomugilins, new selectively cytotoxic metabolites, produced by a marine fish-derived Chaetomium species. J. Antibiot. 61: 615-622. https://doi.org/10.1038/ja.2008.81
  49. Yamada T, Yasuhide M, Shigeta H, Numata A, Tanaka R. 2009. Absolute stereostructures of chaetomugilins G and H produced by a marine-fish-derived Chaetomium species. J. Antibiot. 62: 353-357. https://doi.org/10.1038/ja.2009.39
  50. Muroga Y, Yamada T, Numata A, Tanaka R. 2009. Chaetomugilins I-O, new potent cytotoxic metabolites from a marine-fish-derived Chaetomium species. Stereochemistry and biological activities. Tetrahedron 65: 7580-7586. https://doi.org/10.1016/j.tet.2009.06.125
  51. Yamada T, Muroga Y, Tanaka R. 2009. New azaphilones, seco-chaetomugilins A and D, produced by a marine-fish-derived Chaetomium globosum. Mar. Drugs 7: 249-257. https://doi.org/10.3390/md7020249
  52. Muroga Y, Yamada T, Numata A, Tanaka R. 2010. 11- and 4'-Epimers of chaetomugilin A, novel cytostatic metabolites from marine fish-derived fungus Chaetomium globosum. Helv. Chim. Acta 93: 542-549. https://doi.org/10.1002/hlca.200900272
  53. Yamada T, Muroga Y, Jinno M, Kajimoto T, Usami Y, Numata A, et al. 2011. New class azaphilone produced by a marine fish-derived Chaetomium globosum. The stereochemistry and biological activities. Bioorg. Med. Chem. 19: 4106-4113. https://doi.org/10.1016/j.bmc.2011.05.008
  54. Yamada T, Jinno M, Kikuchi T, Kajimoto T, Numata A, Tanaka R. 2012. Three new azaphilones produced by a marine fish-derived Chaetomium globosum. J. Antibiot. 65: 413-417. https://doi.org/10.1038/ja.2012.40
  55. Hu X, Wang J, Chai J, Yu X, Zhang Y, Feng Y, et al. 2020. Chaetomugilin J enhances apoptosis in human ovarian cancer A2780 cells induced by cisplatin through inhibiting pink1/parkin mediated mitophagy. Onco. Targets Ther. 13: 9967-9976. https://doi.org/10.2147/OTT.S273435
  56. Wang W, Liao Y, Chen R, Hou Y, Ke W, Zhang B, et al. 2018. Chlorinated azaphilonepigments with antimicrobial and cytotoxic activities isolated from the deep sea derived fungus Chaetomium sp. NA-S01-R1. Mar. Drugs 16: 61. https://doi.org/10.3390/md16020061
  57. Sun C, Ge X, Mudassir S, Zhou L, Yu G, Che Q, et al. 2019. New glutamine-containing azaphilone alkaloids from deep-sea-derived fungus Chaetomium globosum HDN151398. Mar. Drugs 17: 53. https://doi.org/10.3390/md17010053
  58. Wang W, Yang J, Liao YY, Cheng G, Chen J, Cheng XD, et al. 2020. Cytotoxic nitrogenated azaphilones from the deep-sea-derived fungus Chaetomium globosum MP4-S01-7. J. Nat. Prod. 83: 1157-1166. https://doi.org/10.1021/acs.jnatprod.9b01165
  59. Piyasena KGNP, Wickramarachchi WART, Kumar NS, Jayasinghe L, Fujimoto Y. 2015. Two phytotoxic azaphilone derivatives from Chaetomium globosum, a fungal endophyte isolated from Amaranthus viridis leaves. Mycology 6: 158-160. https://doi.org/10.1080/21501203.2015.1089332
  60. Wang D, Zhang Y, Li X, Pan H, Chang M, Zheng T, et al. 2017. Potential allelopathic azaphilones produced by the endophytic Chaetomium globosum TY1 inhabited in Ginkgo biloba using the one strain-many compounds method. Nat. Prod. Res. 31: 724-728. https://doi.org/10.1080/14786419.2016.1217208
  61. Youn UJ, Sripisut T, Park EJ, Kondratyuk TP, Fatima N, Simmons CJ, et al. 2015. Determination of the absolute configuration of chaetoviridins and other bioactive azaphilones from the endophytic fungus Chaetomium globosum. Bioorg. Med. Chem. Lett. 25: 4719-4723. https://doi.org/10.1016/j.bmcl.2015.08.063
  62. Phonkerd N, Kanokmedhakul S, Kanokmedhakul K, Soytong K, Prabpai S, Kongsearee P. 2008. Bio-spiro-azaphilones and azaphilones from the fungi Chaetomium cochliodes VTh01 and C. cochliodes Cth05. Tetrahedron 64: 9636-9645. https://doi.org/10.1016/j.tet.2008.07.040
  63. Awad NE, Kassem HA, Hamed MA, El-Naggar MA, El-Feky AM. 2014. Bioassays guided isolation of compounds from Chaetomium globosum. J. Mycol. Med. 24: e35-e42. https://doi.org/10.1016/j.mycmed.2013.10.005
  64. Loureiro DRP, Soares JX, Costa JC, Magalhaes AF, Azevedo CMG, Pinto MMM, et al. 2019. Structures, activities and drug-likeness of anti-infective xanthone derivatives isolated from the marine environment: a review. Molecules 24: 243. https://doi.org/10.3390/molecules24020243
  65. Santos CMM, Freitas M, Fernandes E. 2018. A comprehensive review on xanthone derivatives as α-glucosidase inhibitors. Eur. J. Med. Chem. 157: 1460-1479. https://doi.org/10.1016/j.ejmech.2018.07.073
  66. Wezeman T, Brase S, Masters KS. 2015. Xanthone dimers: a compound family which is both common and privileged. Nat. Prod. Rep. 32: 6-28. https://doi.org/10.1039/C4NP00050A
  67. Resende DISP, Pereira-Terra P, Inacio AS, Costa PM, Pinto E, Sousa ME, et al. 2018. Lichen xanthones as models for new antifungal agents. Molecules 23: 2617. https://doi.org/10.3390/molecules23102617
  68. Pinto MMM, Castanheiro RAP, Kijjoa A. 2014. Xanthones from marine-derived microorganisms: isolation, structure elucidation and biological activities. Encycl. Anal. Chem. 27: 1-21.
  69. Bedi P, Gupta R, Pramanik T. 2018. Synthesis and biological properties of pharmaceutically important xanthones and benzoxanthone analogs: A brief review. Asian J. Pharm. Clin. Res. 11: 12-20. https://doi.org/10.22159/ajpcr.2018.v11i2.22426
  70. Losgen S, Schlorke O, Meindl K, Herbst-Irmer R, Zeeck A. 2007. Structure and biosynthesis of chaetocyclinones, new polyketides produced by an endosymbiotic fungus. Eur. J. Org. Chem. 13: 2191-2196.
  71. Pontius A, Krick A, Kehraus S, Brun R, Konig GM. 2008. Antiprotozoal activities of heterocyclic-substituted xanthones from the marine-derived fungus Chaetomium sp. J. Nat. Prod. 71: 1579-1584. https://doi.org/10.1021/np800294q
  72. Wang S, Li XM, Teuscher F, Li DL, Diesel A, Ebel R, et al. 2006. Chaetopyranin, a benzaldehyde derivative, and other related metabolites from Chaetomium globosum, an endophytic fungus derived from the marine red alga Polysiphoniaurceolata. J. Nat. Prod. 69: 1622-1625. https://doi.org/10.1021/np060248n
  73. Abdel-Lateff A. 2008. Chaetominedione, a new tyrosine kinase inhibitor isolated from the algicolous marine fungus Chaetomium sp. Tetrahedron Lett. 49: 6398-6400. https://doi.org/10.1016/j.tetlet.2008.08.064
  74. Jin M, Gai Y, Guo X, Hou Y, Zeng R. 2019. Properties and applications of extremozymes from deep-sea extremophilic microorganisms: amini review. Mar. Drugs 17: 656. https://doi.org/10.3390/md17120656
  75. Tortorella E, Tedesco P, Palma Esposito F, January GG, Fani R, Jaspars M, et al. 2018. Antibiotics from deep-sea microorganisms: current discoveries and perspectives. Mar. Drugs 16: 355. https://doi.org/10.3390/md16100355