Acknowledgement
This work was supported by the National Natural Science Foundation of China (21602152), Shandong Provincial Natural Science Foundation (ZR2016BB01, ZR2020MH368), Shandong Medical and Health Science and Technology Development Project (202101060623), and finally, Tai'an City Science and Technology Innovation Development Project (2020NS061, 2020NS060).
References
- Von Arx JA, Guarro J, Figueras MJ. 1986. The ascomycete genus Chaetomium. Beih. Nova. Hedw. 84: 1-162.
- Zhang Q, Li HQ, Zong SC, Gao JM, Zhang AL. 2012. Chemical and bioactive diversities of the genus Chaetomium secondary metabolites. Mini Rev. Med. Chem. 12: 127-148. https://doi.org/10.2174/138955712798995066
- Nighat F, Syed AM, Ibrar K, Muneer AQ, Irum S, Amara M, et al. 2016. Chaetomium endophytes: a repository of pharmacologically active metabolites. Acta Physiol. Plant 38: 136. https://doi.org/10.1007/s11738-016-2138-2
- Xu GB, Zhang QY, Zhou M. 2018. Review on the secondary metabolites and its biological activities from Chaetomium fungi. Nat. Prod. Res. Dev. 30: 515-525.
- Liang HL, Tong ZW, Zhu D. 2018. Secondary metabolites from Chaetomiun globosum and their bioactivities. Nat. Prod. Res. Dev. 30: 702-707.
- Shin HJ. 2020. Natural products from marine fungi. Mar. Drugs 18: 230. https://doi.org/10.3390/md18050230
- Pang KL, Overy DP, Jones EBG, da Luz Calado M, Burgaud G, Walker AK, et al. 2016. 'Marine fungi'and 'marine-derived fungi'in natural product chemistry research: toward a new consensual definition. Fungal Biol. Rev. 30: 163-175. https://doi.org/10.1016/j.fbr.2016.08.001
- Overy DP, Rama T, Oosterhuis R, Walker AK, Pang KL. 2019. The neglected marine fungi, sensu stricto, and their isolation for natural products' discovery. Mar. Drugs 17: 42. https://doi.org/10.3390/md17010042
- Schumann J, Hertweck C. 2007. Molecular basis of cytochalasan biosynthesis in fungi: gene cluster analysis and evidence for the involvement of a PKS-NRPS hybrid synthase by RNA silencing. J. Am. Chem. Soc. 129: 9564-9565. https://doi.org/10.1021/ja072884t
- Haidle AM, Myers AG. 2004. An enantioselective, modular, and general route to the cytochalasins: Synthesis of L-696,474 and cytochalasin B. Proc. Natl. Acad. Sci. USA 101: 12048-12053. https://doi.org/10.1073/pnas.0402111101
- Scherlach K, Boettger D, Remme N, Hertweck C. 2010. The chemistry and biology of cytochalasans. Nat. Prod. Rep. 27: 869-886. https://doi.org/10.1039/b903913a
- Skellam E. 2017. The biosynthesis of cytochalasans. Nat. Prod. Rep. 34: 1252-1263. https://doi.org/10.1039/C7NP00036G
- Cui CM, Li XM, Li CS, Proksch P, Wang BG. 2010. Cytoglobosins A-G, cytochalasans from a marine-derived endophytic fungus, Chaetomium globosum QEN-14. J. Nat. Prod. 73: 729-733. https://doi.org/10.1021/np900569t
- Ge HM, Yan W, Guo ZK, Luo Q, Feng R, Zang LY, et al. 2011. Precursor-directed fungal generation of novel halogenated chaetoglobosins with more preferable immunosuppressive action. Chem. Commun. 47: 2321-2323. https://doi.org/10.1039/c0cc04183a
- Zhang Z, Min X, Huang J, Zhong Y, Wu Y, Li X, et al. 2016. Cytoglobosins H and I, new antiproliferative cytochalasans from deepdea-derived fungus Chaetomium globosum. Mar. Drugs 14: 233. https://doi.org/10.3390/md14120233
- Guo ZL, Zheng JJ, Cao F, Wang C, Wang CY. 2017. Chemical constituents of the gorgonian-derived fungus Chaetomium globosum. Chem. Nat. Comp. 53: 199-202. https://doi.org/10.1007/s10600-017-1950-2
- Qi J, Jiang L, Zhao P, Chen H, Jia X, Zhao L, et al. 2020. Chaetoglobosins and azaphilones from Chaetomium globosum associated with Apostichopus japonicus. Appl. Microbiol. Biotechnol. 104: 1545-1553. https://doi.org/10.1007/s00253-019-10308-0
- Luo XW, Gao CH, Lu HM, Wang JM, Su ZQ, Tao HM, et al. 2020. HPLC-DAD-guided isolation of diversified chaetoglobosins from the coral-associated fungus Chaetomium globosum C2F17. Molecules 25: 1237. https://doi.org/10.3390/molecules25051237
- Hirose T, Izawa Y, Koyama K, Natori S, Iida K,Yahara I, et al. 1990. Maruyama. Chem. Pharm. Bull., 38: 971-974. https://doi.org/10.1248/cpb.38.971
- Minato H, Katayama T, Matsumoto M, Katagiri K, Matsuura S, Sunagawa N, et al. 1973. Chem. Pharm. Bull. 21: 2268-2277. https://doi.org/10.1248/cpb.21.2268
- Scherlach K, Boettger D, Remme N, Hertweck C. 2010. The chemistry and biology of cytochalasans. Nat. Prod. Rep. 27: 869-886. https://doi.org/10.1039/b903913a
- Flashner M, Rasmussen J, Patwardhan BH, Tanenbaum SW. 1982. Structural features of cytochalasins responsible for Gram-positive bacterial inhibitions. J. Antibiot. 35: 1345-1350. https://doi.org/10.7164/antibiotics.35.1345
- Jiang CS, Guo YW. 2011. Epipolythiodioxopiperazines from fungi: chemistry and bioactivities. Mini Rev. Med. Chem. 11: 728-745. https://doi.org/10.2174/138955711796355276
- Zhu M, Zhang X, Huang X, Wang H, Anjum K, Gu Q, et al. 2020. Irregularly bridged epipolythiodioxopiperazines and related analogues: sources, structures, and biological activities. J. Nat. Prod. 83: 2045-2053. https://doi.org/10.1021/acs.jnatprod.9b01283
- Gomes NGM, Pereira RB, Andrade PB, Valentao P. 2019. Double the chemistry, double the fun: structural diversity and biological activity of marine-derived diketopiperazine dimers. Mar. Drugs 17: 551. https://doi.org/10.3390/md17100551
- Yun K, Khong TT, Leutou AS, Kim GD, Hong J, Lee CH, et al. 2016. Cristazine, a new cytotoxic dioxopiperazine alkaloid from the mudflat-sediment-derived fungus Chaetomium cristatum. Chem. Pharm. Bull. 64: 59-62. https://doi.org/10.1248/cpb.c15-00525
- Jo MJ, Patil MP, Jung HI, Seo YB, Lim HK, Son BW, et al. 2019. Cristazine, a novel dioxopiperazine alkaloid, induces apoptosis via the death receptor pathway in A431 cells. Drug Dev. Res. 80: 504-512. https://doi.org/10.1002/ddr.21527
- Mcinnes AG, Taylor A. Walter JA. 1976. The structure of chetomin. J. Am. Chem. Soc. 98: 6741-6741. https://doi.org/10.1021/ja00437a074
- Staab A, Loeffler J, Said HM, Diehlmann D, Katzer A, Beyer M, et al. 2007. Effects of HIF-1 inhibition by chetomin on hypoxiarelated transcription and radiosensitivity in HT1080 human fibrosarcoma cells. BMC Cancer 7: 213. https://doi.org/10.1186/1471-2407-7-213
- Viziteu E, Grandmougin C, Goldschmidt H, Seckinger A, Hose D, Klein B, et al. 2016. Chetomin, targeting HIF-1α/p300 complex, exhibits antitumour activity in multiple myeloma. Br. J. Cancer 114: 519-523. https://doi.org/10.1038/bjc.2016.20
- Min S, Wang X, Du Q, Gong H, Yang Y, Wang T, et al. 2020. Chetomin, a Hsp90/HIF1α pathway inhibitor, effectively targets lung cancer stem cells and non-stem cells. Cancer Biol. Ther. 21: 698-708. https://doi.org/10.1080/15384047.2020.1763147
- Dewangan J, Srivastava S, Mishra S, Pandey PK, Divakar A, Rath SK. 2018. Chetomin induces apoptosis in human triple-negative breast cancer cells by promoting calcium overload and mitochondrial dysfunction. Biochem. Biophys. Res. Commun. 495: 1915-1921. https://doi.org/10.1016/j.bbrc.2017.11.199
- Kim KS, Cui X, Lee DS, Sohn JH, Yim JH, Kim YC, et al. 2013. Anti-inflammatory effect of neoechinulin a from the marine fungus Eurotium sp. SF-5989 through the suppression of NF-κB and p38 MAPK pathways in lipopolysaccharide-stimulated RAW264.7 macrophages. Molecules 18: 13245-13259. https://doi.org/10.3390/molecules181113245
- Alhadrami HA, Burgio G, Thissera B, Orfali R, Jiffri SE, Yaseen M, et al. 2022. Neoechinulin A as a promising SARS-CoV-2 Mpro inhibitor: in vitro and in silico study showing the ability of simulations in discerning active from inactive enzyme inhibitors. Mar. Drugs 20: 163. https://doi.org/10.3390/md20030163
- Maruyama K, Ohuchi T, Yoshida K, Shibata Y, Sugawara F, Arai T. 2004. Protective properties of Neoechinulin A against SIN-1-induced neuronal cell death. J. Biochem. 136: 81-87. https://doi.org/10.1093/jb/mvh103
- Sasaki-Hamada S, Hoshi M, Niwa Y, Ueda Y, Kokaji A, Kamisuki S. 2016. Neoechinulin A induced memory improvements and antidepressant-like effects in mice. Prog. Neuropsychopharmacol. Biol. Psychiatry 71: 155-161. https://doi.org/10.1016/j.pnpbp.2016.08.002
- Kimoto K, Aoki T, Shibata Y, Kamisuki S, Sugawara F, Kuramochi K. 2007. Structure-activity relationships of neoechinulin A analogues with cytoprotection against peroxynitrite-induced PC12 cell death. J. Antibiot. 60: 614-621. https://doi.org/10.1038/ja.2007.79
- Singh TP, Singh OM. 2018. Recent progress in biological activities of indole and indole alkaloids. Mini-Rev. Med. Chem. 18: 9-25.
- Li SM. 2010. Prenylated indole derivatives from fungi: Structure diversity, biological activities, biosynthesis and chemoenzymatic synthesis. Nat. Prod. Rep. 27: 57-78. https://doi.org/10.1039/B909987P
- Kochanowska-Karamyan AJ, Hamann MT. 2010. Marine indole alkaloids: potential new drug leads for the control of depression and anxiety. Chem. Rev. 110: 4489-4497. https://doi.org/10.1021/cr900211p
- Netz N, Opatz T. 2015. Marine indole alkaloids. Mar. Drugs 13: 4814-4914. https://doi.org/10.3390/md13084814
- Yan W, Ge HM, Wang G, Jiang N, Mei YN, Jiang R, et al. 2014. Pictet-Spengler reaction-based biosynthetic machinery in fungi. Proc. Natl. Acad. Sci. USA 111: 18138-18143. https://doi.org/10.1073/pnas.1417304111
- Yan W, Zhao SS, Ye YH, Zhang YY, Zhang Y, Xu JY, et al. 2019. Generation of indoles with agrochemical significance through biotransformation by Chaetomium globosum. J. Nat. Prod. 82: 2132-2137. https://doi.org/10.1021/acs.jnatprod.8b01101
- Osmanova N, Schultze W, Ayoub N. 2010. Azaphilones: a class of fungal metabolites with diverse biological activities. Phytochem. Rev. 9: 315-342. https://doi.org/10.1007/s11101-010-9171-3
- Luo X, Lin X, Tao H, Wang J, Li J, Yang B, et al. 2018. J. Nat. Prod. 81: 934-941. https://doi.org/10.1021/acs.jnatprod.7b01053
- Gao JM, Yang SX, Qin JC. 2013. Azaphilones: chemistry and biology. Chem. Rev. 113: 4755-4811. https://doi.org/10.1021/cr300402y
- Yamada T, Doi M, Yasuhide M, Shigeta H, Muroga Y, Hosoe S, et al. 2008. Absolute stereostructures of cytotoxic metabolites, chaetomugilins A-C, produced by a Chaetomium species separated from a marine fish. Tetrahedron Lett. 49: 4192-4195. https://doi.org/10.1016/j.tetlet.2008.04.060
- Yasuhide M, Yamada T, Numata A, Tanaka R. 2008. Chaetomugilins, new selectively cytotoxic metabolites, produced by a marine fish-derived Chaetomium species. J. Antibiot. 61: 615-622. https://doi.org/10.1038/ja.2008.81
- Yamada T, Yasuhide M, Shigeta H, Numata A, Tanaka R. 2009. Absolute stereostructures of chaetomugilins G and H produced by a marine-fish-derived Chaetomium species. J. Antibiot. 62: 353-357. https://doi.org/10.1038/ja.2009.39
- Muroga Y, Yamada T, Numata A, Tanaka R. 2009. Chaetomugilins I-O, new potent cytotoxic metabolites from a marine-fish-derived Chaetomium species. Stereochemistry and biological activities. Tetrahedron 65: 7580-7586. https://doi.org/10.1016/j.tet.2009.06.125
- Yamada T, Muroga Y, Tanaka R. 2009. New azaphilones, seco-chaetomugilins A and D, produced by a marine-fish-derived Chaetomium globosum. Mar. Drugs 7: 249-257. https://doi.org/10.3390/md7020249
- Muroga Y, Yamada T, Numata A, Tanaka R. 2010. 11- and 4'-Epimers of chaetomugilin A, novel cytostatic metabolites from marine fish-derived fungus Chaetomium globosum. Helv. Chim. Acta 93: 542-549. https://doi.org/10.1002/hlca.200900272
- Yamada T, Muroga Y, Jinno M, Kajimoto T, Usami Y, Numata A, et al. 2011. New class azaphilone produced by a marine fish-derived Chaetomium globosum. The stereochemistry and biological activities. Bioorg. Med. Chem. 19: 4106-4113. https://doi.org/10.1016/j.bmc.2011.05.008
- Yamada T, Jinno M, Kikuchi T, Kajimoto T, Numata A, Tanaka R. 2012. Three new azaphilones produced by a marine fish-derived Chaetomium globosum. J. Antibiot. 65: 413-417. https://doi.org/10.1038/ja.2012.40
- Hu X, Wang J, Chai J, Yu X, Zhang Y, Feng Y, et al. 2020. Chaetomugilin J enhances apoptosis in human ovarian cancer A2780 cells induced by cisplatin through inhibiting pink1/parkin mediated mitophagy. Onco. Targets Ther. 13: 9967-9976. https://doi.org/10.2147/OTT.S273435
- Wang W, Liao Y, Chen R, Hou Y, Ke W, Zhang B, et al. 2018. Chlorinated azaphilonepigments with antimicrobial and cytotoxic activities isolated from the deep sea derived fungus Chaetomium sp. NA-S01-R1. Mar. Drugs 16: 61. https://doi.org/10.3390/md16020061
- Sun C, Ge X, Mudassir S, Zhou L, Yu G, Che Q, et al. 2019. New glutamine-containing azaphilone alkaloids from deep-sea-derived fungus Chaetomium globosum HDN151398. Mar. Drugs 17: 53. https://doi.org/10.3390/md17010053
- Wang W, Yang J, Liao YY, Cheng G, Chen J, Cheng XD, et al. 2020. Cytotoxic nitrogenated azaphilones from the deep-sea-derived fungus Chaetomium globosum MP4-S01-7. J. Nat. Prod. 83: 1157-1166. https://doi.org/10.1021/acs.jnatprod.9b01165
- Piyasena KGNP, Wickramarachchi WART, Kumar NS, Jayasinghe L, Fujimoto Y. 2015. Two phytotoxic azaphilone derivatives from Chaetomium globosum, a fungal endophyte isolated from Amaranthus viridis leaves. Mycology 6: 158-160. https://doi.org/10.1080/21501203.2015.1089332
- Wang D, Zhang Y, Li X, Pan H, Chang M, Zheng T, et al. 2017. Potential allelopathic azaphilones produced by the endophytic Chaetomium globosum TY1 inhabited in Ginkgo biloba using the one strain-many compounds method. Nat. Prod. Res. 31: 724-728. https://doi.org/10.1080/14786419.2016.1217208
- Youn UJ, Sripisut T, Park EJ, Kondratyuk TP, Fatima N, Simmons CJ, et al. 2015. Determination of the absolute configuration of chaetoviridins and other bioactive azaphilones from the endophytic fungus Chaetomium globosum. Bioorg. Med. Chem. Lett. 25: 4719-4723. https://doi.org/10.1016/j.bmcl.2015.08.063
- Phonkerd N, Kanokmedhakul S, Kanokmedhakul K, Soytong K, Prabpai S, Kongsearee P. 2008. Bio-spiro-azaphilones and azaphilones from the fungi Chaetomium cochliodes VTh01 and C. cochliodes Cth05. Tetrahedron 64: 9636-9645. https://doi.org/10.1016/j.tet.2008.07.040
- Awad NE, Kassem HA, Hamed MA, El-Naggar MA, El-Feky AM. 2014. Bioassays guided isolation of compounds from Chaetomium globosum. J. Mycol. Med. 24: e35-e42. https://doi.org/10.1016/j.mycmed.2013.10.005
- Loureiro DRP, Soares JX, Costa JC, Magalhaes AF, Azevedo CMG, Pinto MMM, et al. 2019. Structures, activities and drug-likeness of anti-infective xanthone derivatives isolated from the marine environment: a review. Molecules 24: 243. https://doi.org/10.3390/molecules24020243
- Santos CMM, Freitas M, Fernandes E. 2018. A comprehensive review on xanthone derivatives as α-glucosidase inhibitors. Eur. J. Med. Chem. 157: 1460-1479. https://doi.org/10.1016/j.ejmech.2018.07.073
- Wezeman T, Brase S, Masters KS. 2015. Xanthone dimers: a compound family which is both common and privileged. Nat. Prod. Rep. 32: 6-28. https://doi.org/10.1039/C4NP00050A
- Resende DISP, Pereira-Terra P, Inacio AS, Costa PM, Pinto E, Sousa ME, et al. 2018. Lichen xanthones as models for new antifungal agents. Molecules 23: 2617. https://doi.org/10.3390/molecules23102617
- Pinto MMM, Castanheiro RAP, Kijjoa A. 2014. Xanthones from marine-derived microorganisms: isolation, structure elucidation and biological activities. Encycl. Anal. Chem. 27: 1-21.
- Bedi P, Gupta R, Pramanik T. 2018. Synthesis and biological properties of pharmaceutically important xanthones and benzoxanthone analogs: A brief review. Asian J. Pharm. Clin. Res. 11: 12-20. https://doi.org/10.22159/ajpcr.2018.v11i2.22426
- Losgen S, Schlorke O, Meindl K, Herbst-Irmer R, Zeeck A. 2007. Structure and biosynthesis of chaetocyclinones, new polyketides produced by an endosymbiotic fungus. Eur. J. Org. Chem. 13: 2191-2196.
- Pontius A, Krick A, Kehraus S, Brun R, Konig GM. 2008. Antiprotozoal activities of heterocyclic-substituted xanthones from the marine-derived fungus Chaetomium sp. J. Nat. Prod. 71: 1579-1584. https://doi.org/10.1021/np800294q
- Wang S, Li XM, Teuscher F, Li DL, Diesel A, Ebel R, et al. 2006. Chaetopyranin, a benzaldehyde derivative, and other related metabolites from Chaetomium globosum, an endophytic fungus derived from the marine red alga Polysiphoniaurceolata. J. Nat. Prod. 69: 1622-1625. https://doi.org/10.1021/np060248n
- Abdel-Lateff A. 2008. Chaetominedione, a new tyrosine kinase inhibitor isolated from the algicolous marine fungus Chaetomium sp. Tetrahedron Lett. 49: 6398-6400. https://doi.org/10.1016/j.tetlet.2008.08.064
- Jin M, Gai Y, Guo X, Hou Y, Zeng R. 2019. Properties and applications of extremozymes from deep-sea extremophilic microorganisms: amini review. Mar. Drugs 17: 656. https://doi.org/10.3390/md17120656
- Tortorella E, Tedesco P, Palma Esposito F, January GG, Fani R, Jaspars M, et al. 2018. Antibiotics from deep-sea microorganisms: current discoveries and perspectives. Mar. Drugs 16: 355. https://doi.org/10.3390/md16100355