Browse > Article
http://dx.doi.org/10.4014/jmb.2201.01007

A Review on Bioactive Compounds from Marine-Derived Chaetomium Species  

Tian, Yuan (College of Life Science, Shandong First Medical University & Shandong Academy of Medical Sciences)
Li, Yanling (College of Life Science, Shandong First Medical University & Shandong Academy of Medical Sciences)
Publication Information
Journal of Microbiology and Biotechnology / v.32, no.5, 2022 , pp. 541-550 More about this Journal
Abstract
Filamentous marine fungi have proven to be a plentiful source of new natural products. Chaetomium, a widely distributed fungal genus in the marine environment, has gained much interest within the scientific community. In the last 20 years, many potential secondary metabolites have been detected from marine-derived Chaetomium. In this review, we attempt to provide a comprehensive summary of the natural products produced by marine-derived Chaetomium species. A total of 122 secondary metabolites that were described from 2001 to 2021 are covered. The structural diversity of the compounds, along with details of the sources and relevant biological properties are also provided, while the relationships between structures and their bioactivities are discussed. It is our expectation that this review will be of benefit to drug development and innovation.
Keywords
Chaetomium; secondary metabolite; structural diversity; biological activity;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Nighat F, Syed AM, Ibrar K, Muneer AQ, Irum S, Amara M, et al. 2016. Chaetomium endophytes: a repository of pharmacologically active metabolites. Acta Physiol. Plant 38: 136.   DOI
2 Xu GB, Zhang QY, Zhou M. 2018. Review on the secondary metabolites and its biological activities from Chaetomium fungi. Nat. Prod. Res. Dev. 30: 515-525.
3 Liang HL, Tong ZW, Zhu D. 2018. Secondary metabolites from Chaetomiun globosum and their bioactivities. Nat. Prod. Res. Dev. 30: 702-707.
4 Shin HJ. 2020. Natural products from marine fungi. Mar. Drugs 18: 230.   DOI
5 Pang KL, Overy DP, Jones EBG, da Luz Calado M, Burgaud G, Walker AK, et al. 2016. 'Marine fungi'and 'marine-derived fungi'in natural product chemistry research: toward a new consensual definition. Fungal Biol. Rev. 30: 163-175.   DOI
6 Overy DP, Rama T, Oosterhuis R, Walker AK, Pang KL. 2019. The neglected marine fungi, sensu stricto, and their isolation for natural products' discovery. Mar. Drugs 17: 42.   DOI
7 Haidle AM, Myers AG. 2004. An enantioselective, modular, and general route to the cytochalasins: Synthesis of L-696,474 and cytochalasin B. Proc. Natl. Acad. Sci. USA 101: 12048-12053.   DOI
8 Cui CM, Li XM, Li CS, Proksch P, Wang BG. 2010. Cytoglobosins A-G, cytochalasans from a marine-derived endophytic fungus, Chaetomium globosum QEN-14. J. Nat. Prod. 73: 729-733.   DOI
9 Flashner M, Rasmussen J, Patwardhan BH, Tanenbaum SW. 1982. Structural features of cytochalasins responsible for Gram-positive bacterial inhibitions. J. Antibiot. 35: 1345-1350.   DOI
10 Wang S, Li XM, Teuscher F, Li DL, Diesel A, Ebel R, et al. 2006. Chaetopyranin, a benzaldehyde derivative, and other related metabolites from Chaetomium globosum, an endophytic fungus derived from the marine red alga Polysiphoniaurceolata. J. Nat. Prod. 69: 1622-1625.   DOI
11 Mcinnes AG, Taylor A. Walter JA. 1976. The structure of chetomin. J. Am. Chem. Soc. 98: 6741-6741.   DOI
12 Min S, Wang X, Du Q, Gong H, Yang Y, Wang T, et al. 2020. Chetomin, a Hsp90/HIF1α pathway inhibitor, effectively targets lung cancer stem cells and non-stem cells. Cancer Biol. Ther. 21: 698-708.   DOI
13 Abdel-Lateff A. 2008. Chaetominedione, a new tyrosine kinase inhibitor isolated from the algicolous marine fungus Chaetomium sp. Tetrahedron Lett. 49: 6398-6400.   DOI
14 Jin M, Gai Y, Guo X, Hou Y, Zeng R. 2019. Properties and applications of extremozymes from deep-sea extremophilic microorganisms: amini review. Mar. Drugs 17: 656.   DOI
15 Yan W, Ge HM, Wang G, Jiang N, Mei YN, Jiang R, et al. 2014. Pictet-Spengler reaction-based biosynthetic machinery in fungi. Proc. Natl. Acad. Sci. USA 111: 18138-18143.   DOI
16 Wezeman T, Brase S, Masters KS. 2015. Xanthone dimers: a compound family which is both common and privileged. Nat. Prod. Rep. 32: 6-28.   DOI
17 Wang D, Zhang Y, Li X, Pan H, Chang M, Zheng T, et al. 2017. Potential allelopathic azaphilones produced by the endophytic Chaetomium globosum TY1 inhabited in Ginkgo biloba using the one strain-many compounds method. Nat. Prod. Res. 31: 724-728.   DOI
18 Ge HM, Yan W, Guo ZK, Luo Q, Feng R, Zang LY, et al. 2011. Precursor-directed fungal generation of novel halogenated chaetoglobosins with more preferable immunosuppressive action. Chem. Commun. 47: 2321-2323.   DOI
19 Jiang CS, Guo YW. 2011. Epipolythiodioxopiperazines from fungi: chemistry and bioactivities. Mini Rev. Med. Chem. 11: 728-745.   DOI
20 Tortorella E, Tedesco P, Palma Esposito F, January GG, Fani R, Jaspars M, et al. 2018. Antibiotics from deep-sea microorganisms: current discoveries and perspectives. Mar. Drugs 16: 355.   DOI
21 Wang W, Liao Y, Chen R, Hou Y, Ke W, Zhang B, et al. 2018. Chlorinated azaphilonepigments with antimicrobial and cytotoxic activities isolated from the deep sea derived fungus Chaetomium sp. NA-S01-R1. Mar. Drugs 16: 61.   DOI
22 Resende DISP, Pereira-Terra P, Inacio AS, Costa PM, Pinto E, Sousa ME, et al. 2018. Lichen xanthones as models for new antifungal agents. Molecules 23: 2617.   DOI
23 Pontius A, Krick A, Kehraus S, Brun R, Konig GM. 2008. Antiprotozoal activities of heterocyclic-substituted xanthones from the marine-derived fungus Chaetomium sp. J. Nat. Prod. 71: 1579-1584.   DOI
24 Santos CMM, Freitas M, Fernandes E. 2018. A comprehensive review on xanthone derivatives as α-glucosidase inhibitors. Eur. J. Med. Chem. 157: 1460-1479.   DOI
25 Wang W, Yang J, Liao YY, Cheng G, Chen J, Cheng XD, et al. 2020. Cytotoxic nitrogenated azaphilones from the deep-sea-derived fungus Chaetomium globosum MP4-S01-7. J. Nat. Prod. 83: 1157-1166.   DOI
26 Piyasena KGNP, Wickramarachchi WART, Kumar NS, Jayasinghe L, Fujimoto Y. 2015. Two phytotoxic azaphilone derivatives from Chaetomium globosum, a fungal endophyte isolated from Amaranthus viridis leaves. Mycology 6: 158-160.   DOI
27 Phonkerd N, Kanokmedhakul S, Kanokmedhakul K, Soytong K, Prabpai S, Kongsearee P. 2008. Bio-spiro-azaphilones and azaphilones from the fungi Chaetomium cochliodes VTh01 and C. cochliodes Cth05. Tetrahedron 64: 9636-9645.   DOI
28 Pinto MMM, Castanheiro RAP, Kijjoa A. 2014. Xanthones from marine-derived microorganisms: isolation, structure elucidation and biological activities. Encycl. Anal. Chem. 27: 1-21.
29 Von Arx JA, Guarro J, Figueras MJ. 1986. The ascomycete genus Chaetomium. Beih. Nova. Hedw. 84: 1-162.
30 Kochanowska-Karamyan AJ, Hamann MT. 2010. Marine indole alkaloids: potential new drug leads for the control of depression and anxiety. Chem. Rev. 110: 4489-4497.   DOI
31 Schumann J, Hertweck C. 2007. Molecular basis of cytochalasan biosynthesis in fungi: gene cluster analysis and evidence for the involvement of a PKS-NRPS hybrid synthase by RNA silencing. J. Am. Chem. Soc. 129: 9564-9565.   DOI
32 Bedi P, Gupta R, Pramanik T. 2018. Synthesis and biological properties of pharmaceutically important xanthones and benzoxanthone analogs: A brief review. Asian J. Pharm. Clin. Res. 11: 12-20.   DOI
33 Losgen S, Schlorke O, Meindl K, Herbst-Irmer R, Zeeck A. 2007. Structure and biosynthesis of chaetocyclinones, new polyketides produced by an endosymbiotic fungus. Eur. J. Org. Chem. 13: 2191-2196.
34 Qi J, Jiang L, Zhao P, Chen H, Jia X, Zhao L, et al. 2020. Chaetoglobosins and azaphilones from Chaetomium globosum associated with Apostichopus japonicus. Appl. Microbiol. Biotechnol. 104: 1545-1553.   DOI
35 Hirose T, Izawa Y, Koyama K, Natori S, Iida K,Yahara I, et al. 1990. Maruyama. Chem. Pharm. Bull., 38: 971-974.   DOI
36 Minato H, Katayama T, Matsumoto M, Katagiri K, Matsuura S, Sunagawa N, et al. 1973. Chem. Pharm. Bull. 21: 2268-2277.   DOI
37 Skellam E. 2017. The biosynthesis of cytochalasans. Nat. Prod. Rep. 34: 1252-1263.   DOI
38 Zhang Z, Min X, Huang J, Zhong Y, Wu Y, Li X, et al. 2016. Cytoglobosins H and I, new antiproliferative cytochalasans from deepdea-derived fungus Chaetomium globosum. Mar. Drugs 14: 233.   DOI
39 Guo ZL, Zheng JJ, Cao F, Wang C, Wang CY. 2017. Chemical constituents of the gorgonian-derived fungus Chaetomium globosum. Chem. Nat. Comp. 53: 199-202.   DOI
40 Scherlach K, Boettger D, Remme N, Hertweck C. 2010. The chemistry and biology of cytochalasans. Nat. Prod. Rep. 27: 869-886.   DOI
41 Yun K, Khong TT, Leutou AS, Kim GD, Hong J, Lee CH, et al. 2016. Cristazine, a new cytotoxic dioxopiperazine alkaloid from the mudflat-sediment-derived fungus Chaetomium cristatum. Chem. Pharm. Bull. 64: 59-62.   DOI
42 Scherlach K, Boettger D, Remme N, Hertweck C. 2010. The chemistry and biology of cytochalasans. Nat. Prod. Rep. 27: 869-886.   DOI
43 Zhu M, Zhang X, Huang X, Wang H, Anjum K, Gu Q, et al. 2020. Irregularly bridged epipolythiodioxopiperazines and related analogues: sources, structures, and biological activities. J. Nat. Prod. 83: 2045-2053.   DOI
44 Gomes NGM, Pereira RB, Andrade PB, Valentao P. 2019. Double the chemistry, double the fun: structural diversity and biological activity of marine-derived diketopiperazine dimers. Mar. Drugs 17: 551.   DOI
45 Jo MJ, Patil MP, Jung HI, Seo YB, Lim HK, Son BW, et al. 2019. Cristazine, a novel dioxopiperazine alkaloid, induces apoptosis via the death receptor pathway in A431 cells. Drug Dev. Res. 80: 504-512.   DOI
46 Staab A, Loeffler J, Said HM, Diehlmann D, Katzer A, Beyer M, et al. 2007. Effects of HIF-1 inhibition by chetomin on hypoxiarelated transcription and radiosensitivity in HT1080 human fibrosarcoma cells. BMC Cancer 7: 213.   DOI
47 Viziteu E, Grandmougin C, Goldschmidt H, Seckinger A, Hose D, Klein B, et al. 2016. Chetomin, targeting HIF-1α/p300 complex, exhibits antitumour activity in multiple myeloma. Br. J. Cancer 114: 519-523.   DOI
48 Alhadrami HA, Burgio G, Thissera B, Orfali R, Jiffri SE, Yaseen M, et al. 2022. Neoechinulin A as a promising SARS-CoV-2 Mpro inhibitor: in vitro and in silico study showing the ability of simulations in discerning active from inactive enzyme inhibitors. Mar. Drugs 20: 163.   DOI
49 Dewangan J, Srivastava S, Mishra S, Pandey PK, Divakar A, Rath SK. 2018. Chetomin induces apoptosis in human triple-negative breast cancer cells by promoting calcium overload and mitochondrial dysfunction. Biochem. Biophys. Res. Commun. 495: 1915-1921.   DOI
50 Kim KS, Cui X, Lee DS, Sohn JH, Yim JH, Kim YC, et al. 2013. Anti-inflammatory effect of neoechinulin a from the marine fungus Eurotium sp. SF-5989 through the suppression of NF-κB and p38 MAPK pathways in lipopolysaccharide-stimulated RAW264.7 macrophages. Molecules 18: 13245-13259.   DOI
51 Luo XW, Gao CH, Lu HM, Wang JM, Su ZQ, Tao HM, et al. 2020. HPLC-DAD-guided isolation of diversified chaetoglobosins from the coral-associated fungus Chaetomium globosum C2F17. Molecules 25: 1237.   DOI
52 Zhang Q, Li HQ, Zong SC, Gao JM, Zhang AL. 2012. Chemical and bioactive diversities of the genus Chaetomium secondary metabolites. Mini Rev. Med. Chem. 12: 127-148.   DOI
53 Maruyama K, Ohuchi T, Yoshida K, Shibata Y, Sugawara F, Arai T. 2004. Protective properties of Neoechinulin A against SIN-1-induced neuronal cell death. J. Biochem. 136: 81-87.   DOI
54 Sasaki-Hamada S, Hoshi M, Niwa Y, Ueda Y, Kokaji A, Kamisuki S. 2016. Neoechinulin A induced memory improvements and antidepressant-like effects in mice. Prog. Neuropsychopharmacol. Biol. Psychiatry 71: 155-161.   DOI
55 Kimoto K, Aoki T, Shibata Y, Kamisuki S, Sugawara F, Kuramochi K. 2007. Structure-activity relationships of neoechinulin A analogues with cytoprotection against peroxynitrite-induced PC12 cell death. J. Antibiot. 60: 614-621.   DOI
56 Singh TP, Singh OM. 2018. Recent progress in biological activities of indole and indole alkaloids. Mini-Rev. Med. Chem. 18: 9-25.
57 Osmanova N, Schultze W, Ayoub N. 2010. Azaphilones: a class of fungal metabolites with diverse biological activities. Phytochem. Rev. 9: 315-342.   DOI
58 Luo X, Lin X, Tao H, Wang J, Li J, Yang B, et al. 2018. J. Nat. Prod. 81: 934-941.   DOI
59 Gao JM, Yang SX, Qin JC. 2013. Azaphilones: chemistry and biology. Chem. Rev. 113: 4755-4811.   DOI
60 Li SM. 2010. Prenylated indole derivatives from fungi: Structure diversity, biological activities, biosynthesis and chemoenzymatic synthesis. Nat. Prod. Rep. 27: 57-78.   DOI
61 Netz N, Opatz T. 2015. Marine indole alkaloids. Mar. Drugs 13: 4814-4914.   DOI
62 Yamada T, Muroga Y, Tanaka R. 2009. New azaphilones, seco-chaetomugilins A and D, produced by a marine-fish-derived Chaetomium globosum. Mar. Drugs 7: 249-257.   DOI
63 Yamada T, Jinno M, Kikuchi T, Kajimoto T, Numata A, Tanaka R. 2012. Three new azaphilones produced by a marine fish-derived Chaetomium globosum. J. Antibiot. 65: 413-417.   DOI
64 Sun C, Ge X, Mudassir S, Zhou L, Yu G, Che Q, et al. 2019. New glutamine-containing azaphilone alkaloids from deep-sea-derived fungus Chaetomium globosum HDN151398. Mar. Drugs 17: 53.   DOI
65 Yasuhide M, Yamada T, Numata A, Tanaka R. 2008. Chaetomugilins, new selectively cytotoxic metabolites, produced by a marine fish-derived Chaetomium species. J. Antibiot. 61: 615-622.   DOI
66 Muroga Y, Yamada T, Numata A, Tanaka R. 2010. 11- and 4'-Epimers of chaetomugilin A, novel cytostatic metabolites from marine fish-derived fungus Chaetomium globosum. Helv. Chim. Acta 93: 542-549.   DOI
67 Yan W, Zhao SS, Ye YH, Zhang YY, Zhang Y, Xu JY, et al. 2019. Generation of indoles with agrochemical significance through biotransformation by Chaetomium globosum. J. Nat. Prod. 82: 2132-2137.   DOI
68 Yamada T, Doi M, Yasuhide M, Shigeta H, Muroga Y, Hosoe S, et al. 2008. Absolute stereostructures of cytotoxic metabolites, chaetomugilins A-C, produced by a Chaetomium species separated from a marine fish. Tetrahedron Lett. 49: 4192-4195.   DOI
69 Yamada T, Yasuhide M, Shigeta H, Numata A, Tanaka R. 2009. Absolute stereostructures of chaetomugilins G and H produced by a marine-fish-derived Chaetomium species. J. Antibiot. 62: 353-357.   DOI
70 Muroga Y, Yamada T, Numata A, Tanaka R. 2009. Chaetomugilins I-O, new potent cytotoxic metabolites from a marine-fish-derived Chaetomium species. Stereochemistry and biological activities. Tetrahedron 65: 7580-7586.   DOI
71 Yamada T, Muroga Y, Jinno M, Kajimoto T, Usami Y, Numata A, et al. 2011. New class azaphilone produced by a marine fish-derived Chaetomium globosum. The stereochemistry and biological activities. Bioorg. Med. Chem. 19: 4106-4113.   DOI
72 Hu X, Wang J, Chai J, Yu X, Zhang Y, Feng Y, et al. 2020. Chaetomugilin J enhances apoptosis in human ovarian cancer A2780 cells induced by cisplatin through inhibiting pink1/parkin mediated mitophagy. Onco. Targets Ther. 13: 9967-9976.   DOI
73 Youn UJ, Sripisut T, Park EJ, Kondratyuk TP, Fatima N, Simmons CJ, et al. 2015. Determination of the absolute configuration of chaetoviridins and other bioactive azaphilones from the endophytic fungus Chaetomium globosum. Bioorg. Med. Chem. Lett. 25: 4719-4723.   DOI
74 Awad NE, Kassem HA, Hamed MA, El-Naggar MA, El-Feky AM. 2014. Bioassays guided isolation of compounds from Chaetomium globosum. J. Mycol. Med. 24: e35-e42.   DOI
75 Loureiro DRP, Soares JX, Costa JC, Magalhaes AF, Azevedo CMG, Pinto MMM, et al. 2019. Structures, activities and drug-likeness of anti-infective xanthone derivatives isolated from the marine environment: a review. Molecules 24: 243.   DOI