DOI QR코드

DOI QR Code

Effective Platform for the Production of Recombinant Outer Membrane Vesicles in Gram-Negative Bacteria

  • Received : 2020.03.13
  • Accepted : 2020.05.28
  • Published : 2022.05.28

Abstract

Bacterial outer membrane vesicles (OMVs) typically contain multiple immunogenic molecules that include antigenic proteins, making them good candidates for vaccine development. In animal models, vaccination with OMVs has been shown to confer protective immune responses against many bacterial diseases. It is possible to genetically introduce heterologous protein antigens to the bacterial host that can then be produced and relocated to reside within the OMVs by means of the host secretion mechanisms. Accordingly, in this study we sought to develop a novel platform for recombinant OMV (rOMV) production in the widely used bacterial expression host species, Escherichia coli. Three different lipoprotein signal peptides including their Lol signals and tether sequences-from Neisseria meningitidis fHbp, Leptospira interrogans LipL32, and Campylobactor jejuni JlpA-were combined upstream to the GFPmut2 model protein, resulting in three recombinant plasmids. Pilot expression studies showed that the fusion between fHbp and GFPmut2 was the only promising construct; therefore, we used this construct for large-scale expression. After inducing recombinant protein expression, the nanovesicles were harvested from cell-free culture media by ultrafiltration and ultracentrifugation. Transmission electron microscopy demonstrated that the obtained rOMVs were closed, circular single-membrane particles, 20-200 nm in size. Western blotting confirmed the presence of GFPmut2 in the isolated vesicles. Collectively, although this is a non-optimized, proof-of-concept study, it demonstrates the feasibility of this platform in directing target proteins into the vesicles for OMV-based vaccine development.

Keywords

Acknowledgement

The authors gratefully acknowledge the financial support provided by Thammasat University Research Fund under the TU Research Scholar, Contract no. 2/45/2560. We also greatly thank Asst. Prof. Veerachai Thitapakorn for providing administrative assistance.

References

  1. Kulkarni HM, Jagannadham MV. 2014. Biogenesis and multifaceted roles of outer membrane vesicles from Gram-negative bacteria. Microbiology 160: 2109-2121. https://doi.org/10.1099/mic.0.079400-0
  2. Kulp A, Kuehn MJ. 2010. Biological functions and biogenesis of secreted bacterial outer membrane vesicles. Annu. Rev. Microbiol. 64: 163-184. https://doi.org/10.1146/annurev.micro.091208.073413
  3. Ellis TN, Kuehn MJ. 2010. Virulence and immunomodulatory roles of bacterial outer membrane vesicles. Microbiol. Mol. Biol. Rev. 74: 81-94. https://doi.org/10.1128/MMBR.00031-09
  4. Yu Y-j, Wang X-h, Fan G-C. 2018. Versatile effects of bacterium-released membrane vesicles on mammalian cells and infectious/ inflammatory diseases. Acta Pharmacol. Sin. 39: 514-533. https://doi.org/10.1038/aps.2017.82
  5. Kaparakis-Liaskos M, Ferrero RL. 2015. Immune modulation by bacterial outer membrane vesicles. Nat. Rev. Immunol. 15: 375-387. https://doi.org/10.1038/nri3837
  6. Seib KL, Scarselli M, Comanducci M, Toneatto D, Masignani V. 2015. Neisseria meningitidis factor H-binding protein fHbp: a key virulence factor and vaccine antigen. Expert Rev. Vaccines 14: 841-859. https://doi.org/10.1586/14760584.2015.1016915
  7. Acevedo R, Fernandez S, Zayas C, Acosta A, Sarmiento M, Ferro V, et al. 2014. Bacterial outer membrane vesicles and vaccine applications. Front. Immunol. 5: 121. https://doi.org/10.3389/fimmu.2014.00121
  8. van der Pol L, Stork M, van der Ley P. 2015. Outer membrane vesicles as platform vaccine technology. Biotechnol. J. 10: 1689-1706. https://doi.org/10.1002/biot.201400395
  9. Gnopo YMD, Watkins HC, Stevenson TC, DeLisa MP, Putnam D. 2017. Designer outer membrane vesicles as immunomodulatory systems - Reprogramming bacteria for vaccine delivery. Adv. Drug Deliv. Rev. 114: 132-142. https://doi.org/10.1016/j.addr.2017.05.003
  10. Zavan L, Bitto NJ, Johnston EL, Greening DW, Kaparakis-Liaskos M. 2019. Helicobacter pylori growth stage determines the size, protein composition, and preferential cargo packaging of outer membrane vesicles. Proteomics 19: 1800209.
  11. Orench-Rivera N, Kuehn MJ. 2016. Environmentally controlled bacterial vesicle-mediated export. Cell. Microbiol. 18: 1525-1536. https://doi.org/10.1111/cmi.12676
  12. Gerritzen MJH, Maas RHW, van den Ijssel J, van Keulen L, Martens DE, Wijffels RH, Stork M. 2018. High dissolved oxygen tension triggers outer membrane vesicle formation by Neisseria meningitidis. Microb. Cell Fact. 17: 157. https://doi.org/10.1186/s12934-018-1007-7
  13. Gerritzen MJH, Martens DE, Uittenbogaard JP, Wijffels RH, Stork M. 2019. Sulfate depletion triggers overproduction of phospholipids and the release of outer membrane vesicles by Neisseria meningitidis. Sci. Rep. 9: 4716. https://doi.org/10.1038/s41598-019-41233-x
  14. Biagini M, Spinsanti M, De Angelis G, Tomei S, Ferlenghi I, Scarselli M, et al. 2016. Expression of factor H binding protein in meningococcal strains can vary at least 15-fold and is genetically determined. Proc. Natl. Acad. Sci. USA 113: 2714-2719. https://doi.org/10.1073/pnas.1521142113
  15. Pinne M, Haake DA. 2013. LipL32 is a subsurface lipoprotein of Leptospira interrogans: presentation of new data and reevaluation of previous studies. PLoS One 8: e51025-e51025. https://doi.org/10.1371/journal.pone.0051025
  16. Jin S, Joe A, Lynett J, Hani EK, Sherman P, Chan VL. 2001. JlpA, a novel surface-exposed lipoprotein specific to Campylobacter jejuni, mediates adherence to host epithelial cells. Mol. Microbiol. 39: 1225-1236. https://doi.org/10.1111/j.1365-2958.2001.02294.x
  17. Almagro Armenteros JJ, Tsirigos KD, Sonderby CK, Petersen TN, Winther O, Brunak S, et al. 2019. SignalP 5.0 improves signal peptide predictions using deep neural networks. Nat. Biotechnol. 37: 420-423. https://doi.org/10.1038/s41587-019-0036-z
  18. Kim OY, Hong BS, Park K-S, Yoon YJ, Choi SJ, Lee WH, et al. 2013. Preparation of outer membrane vesicle from Escherichia coli. Bio-protocol. 3: e995.
  19. Bartolini E, Ianni E, Frigimelica E, Petracca R, Galli G, Berlanda Scorza F, et al 2013. Recombinant outer membrane vesicles carrying Chlamydia muridarum HtrA induce antibodies that neutralize chlamydial infection in vitro. J. Extracell. Vesicles 2: 20181. https://doi.org/10.3402/jev.v2i0.20181
  20. Gerritzen MJH, Martens DE, Wijffels RH, van der Pol L, Stork M. 2017. Bioengineering bacterial outer membrane vesicles as vaccine platform. Biotechnol. Adv. 35: 565-574. https://doi.org/10.1016/j.biotechadv.2017.05.003
  21. van de Waterbeemd B, Mommen GPM, Pennings JLA, Eppink MH, Wijffels RH, van der Pol LA, et al. 2013. Quantitative proteomics reveals distinct differences in the protein content of outer membrane vesicle vaccines. J. Proteome Res. 12: 1898-1908. https://doi.org/10.1021/pr301208g
  22. Rappazzo CG, Watkins HC, Guarino CM, Chau A, Lopez JL, DeLisa MP, et al. 2016. Recombinant M2e outer membrane vesicle vaccines protect against lethal influenza A challenge in BALB/c mice. Vaccine 34: 1252-1258. https://doi.org/10.1016/j.vaccine.2016.01.028
  23. Salverda MLM, Meinderts SM, Hamstra H-J, Wagemakers A, Hovius JWR, van der Ark A, et al. 2016. Surface display of a borrelial lipoprotein on meningococcal outer membrane vesicles. Vaccine 34: 1025-1033. https://doi.org/10.1016/j.vaccine.2016.01.019
  24. O'Dwyer CA, Reddin K, Martin D, Taylor SC, Gorringe AR, Hudson MJ, et al. 2004. Expression of heterologous antigens in commensal Neisseria spp.: preservation of conformational epitopes with vaccine potential. Infect. Immun. 72: 6511-6518. https://doi.org/10.1128/IAI.72.11.6511-6518.2004
  25. Leitner D, Lichtenegger S, Temel P, Zingl F, Ratzberger D, Roier S, et al. 2015. A combined vaccine approach against Vibrio cholerae and ETEC based on outer membrane vesicles. Front. Microbiol. 6: 823. https://doi.org/10.3389/fmicb.2015.00823
  26. Kuipers K, Daleke-Schermerhorn MH, Jong WSP, ten Hagen-Jongman CM, van Opzeeland F, Simonetti E, et al. 2015. Salmonella outer membrane vesicles displaying high densities of pneumococcal antigen at the surface offer protection against colonization. Vaccine 33: 2022-2029. https://doi.org/10.1016/j.vaccine.2015.03.010
  27. Green ER, Mecsas J. 2016. Bacterial secretion systems: an overview. Microbiol. Spectr. 4: 10.1128/microbiolspec.VMBF-0012-2015.
  28. Zuckert WR. 2014. Secretion of bacterial lipoproteins: through the cytoplasmic membrane, the periplasm and beyond. Biochim. Biophys. Acta 1843: 1509-1516. https://doi.org/10.1016/j.bbamcr.2014.04.022
  29. Konovalova A, Silhavy TJ. 2015. Outer membrane lipoprotein biogenesis: lol is not the end. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 370: 20150030. https://doi.org/10.1098/rstb.2015.0030