DOI QR코드

DOI QR Code

Postbiotics Enhance NK Cell Activation in Stress-Induced Mice through Gut Microbiome Regulation

  • Jung, Ye-Jin (Department of R&D Research Center, KookminBio Corporation) ;
  • Kim, Hyun-Seok (Department of R&D Research Center, KookminBio Corporation) ;
  • Jaygal, Gunn (Department of R&D Research Center, KookminBio Corporation) ;
  • Cho, Hye-Rin (Technical Assistance Department (R&D Department), The Food Industrial Promotional Agency of Korea) ;
  • Lee, Kyung bae (Technical Assistance Department (R&D Department), The Food Industrial Promotional Agency of Korea) ;
  • Song, In-bong (Technical Assistance Department (R&D Department), The Food Industrial Promotional Agency of Korea) ;
  • Kim, Jong-Hoon (Department of Bio and Fermentation Convergence Technology, Kookmin University) ;
  • Kwak, Mi-Sun (Department of Bio and Fermentation Convergence Technology, Kookmin University) ;
  • Han, Kyung-Ho (Department of R&D Research Center, KookminBio Corporation) ;
  • Bae, Min-Jung (Technical Assistance Department (R&D Department), The Food Industrial Promotional Agency of Korea) ;
  • Sung, Moon-Hee (Department of R&D Research Center, KookminBio Corporation)
  • Received : 2021.11.14
  • Accepted : 2022.03.07
  • Published : 2022.05.28

Abstract

Recent studies have revealed that probiotics and their metabolites are present under various conditions; however, the role of probiotic metabolites (i.e., postbiotics in pathological states) is controversial. Natural killer (NK) cells play a key role in innate and adaptive immunity. In this study, we examined NK cell activation influenced by a postbiotics mixture in response to gut microbiome modulation in stress-induced mice. In vivo activation of NK cells increased in the postbiotics mixture treatment group in accordance with Th1/Th2 expression level. Meanwhile, the Red Ginseng treatment group, a reference group, showed very little expression of NK cell activation. Moreover, the postbiotics mixture treatment group in particular changed the gut microbiome composition. Although the exact role of the postbiotics mixture in regulating the immune system of stress-induced mice remains unclear, the postbiotics mixture-induced NK cell activation might have affected gut microbiome modulation.

Keywords

Acknowledgement

This research was supported by the 2020 Collaborative R&BD Program of The Food Industry Promotional Agency of Korea, and a Korea Environmental Industry and Technology Institute (KEITI) grant funded by the Ministry of Environment of Korea.

References

  1. Sanders ME. 2008. Probiotics: definition, sources, selection, and uses. Clin. Infect. Dis. 46 Suppl 2: S58-61; discussion S144-151. https://doi.org/10.1086/523341
  2. Hill C, Guarner F, Reid G, Gibson GR, Merenstein DJ, Pot B, et al. 2014. Expert consensus document: The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat. Rev. Gastroenterol. Hepatol. 11: 506. https://doi.org/10.1038/nrgastro.2014.66
  3. Thomas CM, Versalovic J. 2010. Probiotics-host communication: modulation of signaling pathways in the intestine. Gut Microbes 1: 148-163. https://doi.org/10.4161/gmic.1.3.11712
  4. Vanderpool C, Yan F, Polk BD. 2008. Mechanisms of probiotic action: implications for therapeutic applications in inflammatory bowel diseases. Inflamm. Bowel Dis. 14: 1585-1596. https://doi.org/10.1002/ibd.20525
  5. Hsieh P-S, An Y, Tsai Y-C, Chen Y-C, Chuang C-J, Zeng C-T, et al. 2013. Potential of probiotic strains to modulate the inflammatory responses of epithelial and immune cells in vitro. New Microbiol. 36: 167-179.
  6. Aziz N, Bonavida B. 2016. Activation of natural killer cells by probiotics. For. Immunopathol. Dis. Therap. 7: 41-55. https://doi.org/10.1615/ForumImmunDisTher.2016017095
  7. Kamada N, Seo S-U, Chen GY, Nunez G. 2013. Role of the gut microbiota in immunity and inflammatory disease. Nat. Rev. Immunol. 13: 321-335. https://doi.org/10.1038/nri3430
  8. Belkaid Y, Harrison OJ. 2017. Homeostatic immunity and the microbiota. Immunity 46: 562-576. https://doi.org/10.1016/j.immuni.2017.04.008
  9. Miller LE, Lehtoranta L, Lehtinen MJ. 2017. The effect of Bifidobacterium animalis ssp. lactis HN019 on cellular immune function in healthy elderly subjects: systematic review and meta-analysis. Nutrients 9: 191. https://doi.org/10.3390/nu9030191
  10. Miller LE, Lehtoranta L, Lehtinen MJ. 2019. Short-term probiotic supplementation enhances cellular immune function in healthy elderly: systematic review and meta-analysis of controlled studies. Nutr. Res. 64: 1-8. https://doi.org/10.1016/j.nutres.2018.12.011
  11. Gui Q, Wang A, Zhao X, Huang S, Tan Z, Xiao C, et al. 2020. Effects of probiotic supplementation on natural killer cell function in healthy elderly individuals: a meta-analysis of randomized controlled trials. Eur. J. Clin. Nutr. 74: 1630-1637. https://doi.org/10.1038/s41430-020-0670-z
  12. Shida K, Nanno M. 2008. Probiotics and immunology: separating the wheat from the chaff. Trends Immunol. 29: 565-573. https://doi.org/10.1016/j.it.2008.07.011
  13. Stefania D, Miranda P, Diana M, Claudia Z, Rita P, Donatella P. 2017. Antibiofilm and antiadhesive activities of different synbiotics. J. Probiotics Health 5: 182-191.
  14. De Marco S, Sichetti M, Muradyan D, Piccioni M, Traina G, Pagiotti R, et al. 2018. Probiotic cell-free supernatants exhibited anti-inflammatory and antioxidant activity on human gut epithelial cells and macrophages stimulated with LPS. Evid. Based Complement. Alternat. Med. 2018: 1756308.
  15. Salminen S, Collado MC, Endo A, Hill C, Lebeer S, Quigley EM, et al. 2021. The International Scientific Association of Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of postbiotics. Nat. Rev. Gastroenterol. Hepatol. 18: 649-667. https://doi.org/10.1038/s41575-021-00440-6
  16. Yan F, Polk DB. 2002. Probiotic bacterium prevents cytokine-induced apoptosis in intestinal epithelial cells. J. Biol. Chem. 277: 50959-50965. https://doi.org/10.1074/jbc.M207050200
  17. Yan F, Cao H, Cover TL, Whitehead R, Washington MK, Polk DB. 2007. Soluble proteins produced by probiotic bacteria regulate intestinal epithelial cell survival and growth. Gastroenterol. 132: 562-575. https://doi.org/10.1053/j.gastro.2006.11.022
  18. Yan F, Cao H, Cover TL, Washington MK, Shi Y, Liu L, et al. 2011. Colon-specific delivery of a probiotic-derived soluble protein ameliorates intestinal inflammation in mice through an EGFR-dependent mechanism. J. Clin. Investig. 121: 2242-2253. https://doi.org/10.1172/JCI44031
  19. Yan F, Liu L, Dempsey PJ, Tsai Y-H, Raines EW, Wilson CL, et al. 2013. A Lactobacillus rhamnosus GG-derived soluble protein, p40, stimulates ligand release from intestinal epithelial cells to transactivate epidermal growth factor receptor. J. Biol. Chem. 288: 30742-30751. https://doi.org/10.1074/jbc.M113.492397
  20. Yoon HS, Cho CH, Yun MS, Jang SJ, You HJ, Kim J-h, et al. 2021. Akkermansia muciniphila secretes a glucagon-like peptide-1-inducing protein that improves glucose homeostasis and ameliorates metabolic disease in mice. Nat. Microbiol. 6: 563-573. https://doi.org/10.1038/s41564-021-00880-5
  21. Cassetta L, Cassol E, Poli G. 2011. Macrophage polarization in health and disease. ScientificWorldJournal. 11: 2391-2402. https://doi.org/10.1100/2011/213962
  22. Litvak Y, Byndloss MX, Baumler AJ. 2018. Colonocyte metabolism shapes the gut microbiota. Science 362: eaat9076. https://doi.org/10.1126/science.aat9076
  23. Murray PJ, Wynn TA. 2011. Obstacles and opportunities for understanding macrophage polarization. J. Leukoc. Biol. 89: 557-563. https://doi.org/10.1189/jlb.0710409
  24. Tan JL, Chan ST, Wallace EM, Lim R. 2014. Human amnion epithelial cells mediate lung repair by directly modulating macrophage recruitment and polarization. Cell Transplant. 23: 319-328. https://doi.org/10.3727/096368912X661409
  25. Ji J, Shu D, Zheng M, Wang J, Luo C, Wang Y, et al. 2016. Microbial metabolite butyrate facilitates M2 macrophage polarization and function. Sci. Rep. 6: 24838. https://doi.org/10.1038/srep24838
  26. Lissner D, Schumann M, Batra A, Kredel L-I, Kuhl AA, Erben U, et al. 2015. Monocyte and M1 macrophage-induced barrier defect contributes to chronic intestinal inflammation in IBD. Inflamm. Bowel Dis. 21: 1297-1305. https://doi.org/10.1097/MIB.0000000000000384
  27. Amasheh S, Meiri N, Gitter AH, Schoneberg T, Mankertz J, Schulzke JD, et al. 2002. Claudin-2 expression induces cation-selective channels in tight junctions of epithelial cells. J. Cell Sci. 115: 4969-4976. https://doi.org/10.1242/jcs.00165
  28. Sanchez B, Urdaci MC. 2012. Extracellular proteins from Lactobacillus plantarum BMCM12 prevent adhesion of enteropathogens to mucin. Curr. Microbiol. 64: 592-596. https://doi.org/10.1007/s00284-012-0115-6
  29. Lee HA, Han SJ, Hong S, Kim DW, Oh GW, Kim O. 2014. Onion peel water extracts enhance immune status in forced swimming rat model. Lab Anim Res. 30: 161-168. https://doi.org/10.5625/lar.2014.30.4.161
  30. Kim J-H, Shin E-H, Lee H-Y, Lee B-G, Park S-H, Moon D-I, et al. 2013. Immunostimulating effects of extract of Acanthopanax sessiliflorus. Exp. Anim. 62: 247-253. https://doi.org/10.1538/expanim.62.247
  31. Lee H-A, Han S-J, Hong S, Kim D-W, Oh G-W, Kim O. 2014. Onion peel water extracts enhance immune status in forced swimming rat model. Lab. Anim.Res. 30: 161-168. https://doi.org/10.5625/lar.2014.30.4.161
  32. Lee B, Sur B, Lee H, Oh S. 2020. Korean Red Ginseng prevents posttraumatic stress disorder-triggered depression-like behaviors in rats via activation of the serotonergic system. J. Ginseng Res. 44: 644-654. https://doi.org/10.1016/j.jgr.2019.09.005
  33. Food, Administration D. 2005. Guidance for industry: estimating the maximum safe starting dose in initial clinical trials for therapeutics in adult healthy volunteers. Center for Drug Evaluation and Research (CDER). 7.
  34. Loftus RM, Assmann N, Kedia-Mehta N, O'Brien KL, Garcia A, Gillespie C, et al. 2018. Amino acid-dependent cMyc expression is essential for NK cell metabolic and functional responses in mice. Nat. Commun. 9: 2341. https://doi.org/10.1038/s41467-018-04719-2
  35. Lamas B, Vergnaud-Gauduchon J, Goncalves-Mendes N, Perche O, Rossary A, Vasson M-P, et al. 2012. Altered functions of natural killer cells in response to L-Arginine availability. Cell. Immunol. 280: 182-190. https://doi.org/10.1016/j.cellimm.2012.11.018
  36. Grohmann U, Mondanelli G, Belladonna ML, Orabona C, Pallotta MT, Iacono A, et al. 2017. Amino-acid sensing and degrading pathways in immune regulation. Cytokine Growth Factor Rev. 35: 37-45. https://doi.org/10.1016/j.cytogfr.2017.05.004
  37. Akatsu H. 2021. Exploring the effect of probiotics, prebiotics, and postbiotics in strengthening immune activity in the elderly. Vaccines 9: 136. https://doi.org/10.3390/vaccines9020136
  38. Cicenia A, Santangelo F, Gambardella L, Pallotta L, Iebba V, Scirocco A, et al. 2016. Protective role of postbiotic mediators secreted by Lactobacillus rhamnosus GG versus lipopolysaccharide-induced damage in human colonic smooth muscle cells. J. Clin. Gastroenterol. 50: S140-S144. https://doi.org/10.1097/MCG.0000000000000681
  39. Gao J, Li Y, Wan Y, Hu T, Liu L, Yang S, et al. 2019. A novel postbiotic from Lactobacillus rhamnosus GG with a beneficial effect on intestinal barrier function. Front. Microbiol. 10: 477. https://doi.org/10.3389/fmicb.2019.00477
  40. Michel T, Hentges F, Zimmer J. 2013. Consequences of the crosstalk between monocytes/macrophages and natural killer cells. Front. Immunol. 3: 403. https://doi.org/10.3389/fimmu.2012.00403
  41. Schoenborn JR, Wilson CB. 2007. Regulation of interferon-γ during innate and adaptive immune responses. Adv. Immunol. 96: 41-101. https://doi.org/10.1016/S0065-2776(07)96002-2
  42. Keppel MP, Saucier N, Mah AY, Vogel TP, Cooper MA. 2015. Activation-specific metabolic requirements for NK Cell IFN-γ production. J. Immunol. 194: 1954-1962. https://doi.org/10.4049/jimmunol.1402099
  43. Donnelly RP, Loftus RM, Keating SE, Liou KT, Biron CA, Gardiner CM, et al. 2014. mTORC1-dependent metabolic reprogramming is a prerequisite for NK cell effector function. J. Immunol. 193: 4477-4484. https://doi.org/10.4049/jimmunol.1401558
  44. Marcais A, Cherfils-Vicini J, Viant C, Degouve S, Viel S, Fenis A, et al. 2014. The metabolic checkpoint kinase mTOR is essential for IL-15 signaling during the development and activation of NK cells. Nat. Immunol. 15: 749-757. https://doi.org/10.1038/ni.2936
  45. Keating SE, Zaiatz-Bittencourt V, Loftus RM, Keane C, Brennan K, Finlay DK, et al. 2016. Metabolic reprogramming supports IFN-γ production by CD56bright NK cells. J. Immunol. 196: 2552-2560. https://doi.org/10.4049/jimmunol.1501783
  46. Cham CM, Gajewski TF. 2005. Glucose availability regulates IFN-γ production and p70S6 kinase activation in CD8+ effector T cells. J. Immunol. 174: 4670-4677. https://doi.org/10.4049/jimmunol.174.8.4670
  47. Chang C-H, Curtis JD, Maggi Jr LB, Faubert B, Villarino AV, O'Sullivan D, et al. 2013. Posttranscriptional control of T cell effector function by aerobic glycolysis. Cell 153: 1239-1251. https://doi.org/10.1016/j.cell.2013.05.016
  48. Mah AY, Cooper MA. 2016. Metabolic regulation of natural killer cell IFN-γ production. Crit. Rev. Immunol. 36: 131-147. https://doi.org/10.1615/critrevimmunol.2016017387
  49. Parronchi P, De Carli M, Manetti R, Simonelli C, Sampognaro S, Piccinni M, et al. 1992. IL-4 and IFN (alpha and gamma) exert opposite regulatory effects on the development of cytolytic potential by Th1 or Th2 human T cell clones. J. Immunol. 149: 2977-2983. https://doi.org/10.4049/jimmunol.149.9.2977
  50. Abbas AK, Murphy KM, Sher A. 1996. Functional diversity of helper T lymphocytes. Nature 383: 787-793. https://doi.org/10.1038/383787a0
  51. Oriss TB, McCarthy SA, Morel BF, Campana M, Morel PA. 1997. Crossregulation between T helper cell (Th) 1 and Th2: inhibition of Th2 proliferation by IFN-gamma involves interference with IL-1. J. Immunol. 158: 3666-3672. https://doi.org/10.4049/jimmunol.158.8.3666
  52. Szabo SJ, Dighe AS, Gubler U, Murphy KM. 1997. Regulation of the interleukin (IL)-12R β2 subunit expression in developing T helper 1 (Th1) and Th2 cells. J. Exp. Med. 185: 817-824. https://doi.org/10.1084/jem.185.5.817
  53. Katsumoto T, Kimura M, Yamashita M, Hosokawa H, Hashimoto K, Hasegawa A, et al. 2004. STAT6-dependent differentiation and production of IL-5 and IL-13 in murine NK2 cells. J. Immunol. 173: 4967-4975. https://doi.org/10.4049/jimmunol.173.8.4967
  54. Jackson RJ, Ramsay AJ, Christensen CD, Beaton S, Hall DF, Ramshaw IA. 2001. Expression of mouse interleukin-4 by a recombinant ectromelia virus suppresses cytolytic lymphocyte responses and overcomes genetic resistance to mousepox. J. Virol. 75: 1205-1210. https://doi.org/10.1128/JVI.75.3.1205-1210.2001
  55. Brady J, Carotta S, Thong RP, Chan CJ, Hayakawa Y, Smyth MJ, et al. 2010. The interactions of multiple cytokines control NK cell maturation. J. Immunol. 185: 6679-6688. https://doi.org/10.4049/jimmunol.0903354
  56. Tanaka T, Narazaki M, Kishimoto T. 2014. IL-6 in inflammation, immunity, and disease. Cold Spring Harb. Perspect. Biol. 6: a016295. https://doi.org/10.1101/cshperspect.a016295
  57. Dessaune N, Porpino MTM, Antunes HdS, Rodrigues RCV, Perez AR, Pires FR, et al. 2018. Pro-inflammatory and anti-inflammatory cytokine expression in post-treatment apical periodontitis. J. Appl. Oral Sci. 26: e20170455. https://doi.org/10.1590/1678-7757-2017-0455
  58. Jun K-D, Lee K-H, Kim W-S, Paik H-D. 2000. Microbiological identification of medical probiotic Bispan strain. Microbiol. Biotechnol. Lett. 28: 124-127.
  59. Kim H-S, Park H, Cho I-Y, Paik H-D, Park E. 2006. Dietary supplementation of probiotic Bacillus polyfermenticus, Bispan strain, modulates natural killer cell and T cell subset populations and immunoglobulin G levels in human subjects. J. Med. Food 9: 321-327. https://doi.org/10.1089/jmf.2006.9.321
  60. Heo S, Kim J-H, Kwak M-S, Sung M-H, Jeong D-W. 2021. Functional annotation genome unravels potential probiotic Bacillus velezensis strain KMU01 from traditional Korean fermented kimchi. Foods. 10: 563. https://doi.org/10.3390/foods10030563
  61. Ou CC, Lin SL, Tsai JJ, Lin MY. 2011. Heat-killed lactic acid bacteria enhance immunomodulatory potential by skewing the immune response toward Th1 polarization. J. Food Sci. 76: M260-M267. https://doi.org/10.1111/j.1750-3841.2011.02161.x
  62. Wu Z, Pan D, Guo Y, Sun Y, Zeng X. 2015. Peptidoglycan diversity and anti-inflammatory capacity in Lactobacillus strains. Carbohydr. Polym. 128: 130-137. https://doi.org/10.1016/j.carbpol.2015.04.026
  63. Yesilyurt N, Yilmaz B, Agagunduz D, Capasso R. 2021. Involvement of probiotics and postbiotics in the immune system modulation. Biologics 1: 89-110. https://doi.org/10.3390/biologics1020006
  64. Manson JM, Rauch M, Gilmore MS. 2008. The commensal microbiology of the gastrointestinal tract. Adv. Exp. Med. Biol. 635: 15-28. https://doi.org/10.1007/978-0-387-09550-9_2
  65. Parada Venegas D, De la Fuente MK, Landskron G, Gonzalez MJ, Quera R, Dijkstra G, et al. 2019. Short chain fatty acids (SCFAs)-mediated gut epithelial and immune regulation and its relevance for inflammatory bowel diseases. Front. Immunol. 10: 277. https://doi.org/10.3389/fimmu.2019.00277
  66. Kaakoush NO. 2015. Insights into the role of Erysipelotrichaceae in the human host. Front. Cell. Infect. Microbiol. 5: 84. https://doi.org/10.3389/fcimb.2015.00084
  67. Waidmann M, Bechtold O, Frick J-s, Lehr H-a, Schubert S, Dobrindt U, et al. 2003. Bacteroides vulgatus protects against Escherichia coli-induced colitis in gnotobiotic interleukin-2-deficient mice. Gastroenterology 125: 162-177. https://doi.org/10.1016/S0016-5085(03)00672-3