Acknowledgement
This work was supported by the Ministry of Food and Drug Safety, Korea, and the Commercializations Promotion Agency for R&D Outcomes (COMPA) grant (2021N100) funded by the Korea government (MSIT).
References
- Hernandez-Reyes C, Schikora A. 2013. Salmonella, a cross-kingdom pathogen infecting humans and plants. FEMS Microbiol. Lett. 343: 1-7. https://doi.org/10.1111/1574-6968.12127
- Willis C, McLauchlin J, Aird H, Amar C, Barker C, Dallman T, et al. 2020. Occurrence of listeria and Escherichia coli in frozen fruit and vegetables collected from retail and catering premises in England 2018-2019. Int. J. Food Microbiol. 334: 108849. https://doi.org/10.1016/j.ijfoodmicro.2020.108849
- Mokoena MP, Omatola CA, Olaniran AO. 2021. Applications of lactic acid bacteria and their bacteriocins against food spoilage microorganisms and foodborne pathogens. Molecules 26: 7055. https://doi.org/10.3390/molecules26227055
- Cho J-I, Joo I-S, Park K-S, Han M-K, Son N-R, Jeong S-J, et al. 2014. Characterization of pathogenic Escherichia coli strains linked to an outbreak associated with kimchi consumption in South Korea, 2012. Food Sci. Biotechnol. 23: 209-214. https://doi.org/10.1007/s10068-014-0028-1
- Shin J, Yoon K-B, Jeon D-Y, Oh S-S, Oh K-H, Chung GT, et al. 2016. Consecutive outbreaks of enterotoxigenic Escherichia coli O6 in schools in South Korea caused by contamination of fermented vegetable kimchi. Foodborne Pathog. Dis. 13: 535-543. https://doi.org/10.1089/fpd.2016.2147
- Croxen MA, Law RJ, Scholz R, Keeney KM, Wlodarska M, Finlay BB. 2013. Recent advances in understanding enteric pathogenic Escherichia coli. Clin. Microbiol. Rev 26: 822-880. https://doi.org/10.1128/CMR.00022-13
- Nataro JP, Kaper JB. 1998. Diarrheagenic Escherichia coli. Clin. Microbiol. Rev. 11: 142-201. https://doi.org/10.1128/cmr.11.1.142
- Lund P, Tramonti A, De Biase D. 2014. Coping with low pH: molecular strategies in neutralophilic bacteria. FEMS Microbiol. Rev. 38: 1091-1125. https://doi.org/10.1111/1574-6976.12076
- Sun Y, Fukamachi T, Saito H, Kobayashi H. 2012. Respiration and the F(1)Fo-ATPase enhance survival under acidic conditions in Escherichia coli. PLoS One 7: e52577. https://doi.org/10.1371/journal.pone.0052577
- Lu P, Ma D, Chen Y, Guo Y, Chen GQ, Deng H, et al. 2013. L-glutamine provides acid resistance for Escherichia coli through enzymatic release of ammonia. Cell Res. 23: 635-644. https://doi.org/10.1038/cr.2013.13
- Chang YY, Cronan JE, Jr. 1999. Membrane cyclopropane fatty acid content is a major factor in acid resistance of Escherichia coli. Mol. Microbiol. 33: 249-259. https://doi.org/10.1046/j.1365-2958.1999.01456.x
- Dahl JU, Koldewey P, Salmon L, Horowitz S, Bardwell JC, Jakob U. 2015. HdeB functions as an acid-protective chaperone in bacteria. J. Biol. Chem. 290: 9950. https://doi.org/10.1074/jbc.A114.612986
- Eguchi Y, Ishii E, Hata K, Utsumi R. 2011. Regulation of acid resistance by connectors of two-component signal transduction systems in Escherichia coli. J. Bacteriol. 193: 1222-1228. https://doi.org/10.1128/JB.01124-10
- Hengge R. 2009. Proteolysis of sigmaS (RpoS) and the general stress response in Escherichia coli. Res. Microbiol. 160: 667-676. https://doi.org/10.1016/j.resmic.2009.08.014
- Aquino P, Honda B, Jaini S, Lyubetskaya A, Hosur K, Chiu JG, et al. 2017. Coordinated regulation of acid resistance in Escherichia coli. BMC Syst. Biol. 11: 1.
- Diez-Gonzalez F, Karaibrahimoglu Y. 2004. Comparison of the glutamate-, arginine- and lysine-dependent acid resistance systems in Escherichia coli O157:H7. J Appl. Microbiol. 96: 1237-1244. https://doi.org/10.1111/j.1365-2672.2004.02251.x
- Sayed AK, Foster JW. 2009. A 750 bp sensory integration region directs global control of the Escherichia coli GadE acid resistance regulator. Mol. Microbiol. 71: 1435-1450. https://doi.org/10.1111/j.1365-2958.2009.06614.x
- Zhao B, Houry WA. 2010. Acid stress response in enteropathogenic gammaproteobacteria: an aptitude for survival. Biochem. Cell Biol. 88: 301-314. https://doi.org/10.1139/O09-182
- Rensing C, Grass G. 2003. Escherichia coli mechanisms of copper homeostasis in a changing environment. FEMS Microbiol. Rev. 27: 197-213. https://doi.org/10.1016/S0168-6445(03)00049-4
- Djoko KY, Phan M-D, Peters KM, Walker MJ, Schembri MA, McEwan AG. 2017. Interplay between tolerance mechanisms to copper and acid stress in Escherichia coli. Proc. Natl. Acad. Sci. 114: 6818-6823. https://doi.org/10.1073/pnas.1620232114
- Blattner FR, Plunkett G, 3rd, Bloch CA, Perna NT, Burland V, Riley M, et al. 1997. The complete genome sequence of Escherichia coli K-12. Science 277: 1453-1462. https://doi.org/10.1126/science.277.5331.1453
- Datsenko KA, Wanner BL. 2000. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc. Natl. Acad. Sci. 97: 6640-6645. https://doi.org/10.1073/pnas.120163297
- Murphy KC, Campellone KG. 2003. Lambda Red-mediated recombinogenic engineering of enterohemorrhagic and enteropathogenic E. coli. BMC Mol. Biol. 4: 1-12. https://doi.org/10.1186/1471-2199-4-1
- Cherepanov PP, Wackernagel W. 1995. Gene disruption in Escherichia coli: TcR and KmR cassettes with the option of Flp-catalyzed excision of the antibiotic-resistance determinant. Gene 158: 9-14. https://doi.org/10.1016/0378-1119(95)00193-A
- Thomason LC, Costantino N, Court DL. 2007. E. coli genome manipulation by P1 transduction. Curr. Protoc. Mol. Biol. 79: 1.17.11-11.17.18.
- Guzman L-M, Belin D, Carson MJ, Beckwith J. 1995. Tight regulation, modulation, and high-level expression by vectors containing the arabinose PBAD promoter. J. Bacteriol. 177: 4121-4130. https://doi.org/10.1128/jb.177.14.4121-4130.1995
- Risso D, Ngai J, Speed TP, Dudoit S. 2014. Normalization of RNA-seq data using factor analysis of control genes or samples. Nat. Biotechnol. 32: 896-902. https://doi.org/10.1038/nbt.2931
- Robinson MD, Oshlack A. 2010. A scaling normalization method for differential expression analysis of RNA-seq data. Genome Biol. 11: R25. https://doi.org/10.1186/gb-2010-11-3-r25
- Dillies M-A, Rau A, Aubert J, Hennequet-Antier C, Jeanmougin M, Servant N, et al. 2013. A comprehensive evaluation of normalization methods for Illumina high-throughput RNA sequencing data analysis. Brief. Bioinform. 14: 671-683. https://doi.org/10.1093/bib/bbs046
- Perez-Llamas C, Lopez-Bigas N. 2011. Gitools: analysis and visualisation of genomic data using interactive heat-maps. PLoS One 6: e19541. https://doi.org/10.1371/journal.pone.0019541
- Arenas FA, Diaz WA, Leal CA, Perez-Donoso JM, Imlay JA, Vasquez CC. 2010. The Escherichia coli btuE gene, encodes a glutathione peroxidase that is induced under oxidative stress conditions. Biochem. Biophys. Res. Commun. 398: 690-694. https://doi.org/10.1016/j.bbrc.2010.07.002
- De Biase D, Tramonti A, Bossa F, Visca P. 1999. The response to stationary-phase stress conditions in Escherichia coli: role and regulation of the glutamic acid decarboxylase system. Mol. Microbiol. 32: 1198-1211. https://doi.org/10.1046/j.1365-2958.1999.01430.x
- Outten FW, Huffman DL, Hale JA, O'Halloran TV. 2001. The independent cue and cus systems confer copper tolerance during aerobic and anaerobic growth in Escherichia coli. J. Biol. Chem. 276: 30670-30677. https://doi.org/10.1074/jbc.M104122200
- Lyu C, Zhao W, Peng C, Hu S, Fang H, Hua Y, et al. 2018. Exploring the contributions of two glutamate decarboxylase isozymes in Lactobacillus brevis to acid resistance and gamma-aminobutyric acid production. Microb. Cell Fact. 17: 180. https://doi.org/10.1186/s12934-018-1029-1
- Kimura R, Kasamatsu A, Koyama T, Fukumoto C, Kouzu Y, Higo M, et al. 2013. Glutamate acid decarboxylase 1 promotes metastasis of human oral cancer by β-catenin translocation and MMP7 activation. BMC Cancer 13: 1-11. https://doi.org/10.1186/1471-2407-13-1
- Lamar Jr C. 1970. Mercaptopropionic acid: a convulsant that inhibits glutamate decarboxylase 1. J. Neurochem. 17: 165-170. https://doi.org/10.1111/j.1471-4159.1970.tb02197.x
- Grossfeld RM, Yancey SW, Baxter CF. 1984. Inhibitors of crayfish glutamic acid decarboxylase. Neurochem. Res. 9: 947-963. https://doi.org/10.1007/BF00964526
- Yin Y, Cheng C, Fang W. 2018. Effects of the inhibitor of glutamate decarboxylase on the development and GABA accumulation in germinating fava beans under hypoxia-NaCl stress. RSC Adv. 8: 20456-20461. https://doi.org/10.1039/C8RA03940B
- Snider Jr DE. 1980. Pyridoxine supplementation during isoniazid therapy. Tubercle 61: 191-196. https://doi.org/10.1016/0041-3879(80)90038-0
- Wood J, Peesker S. 1972. A correlation between changes in GABA metabolism and isonicotinic acid hydrazide-induced seizures. Brain Res. 45: 489-498. https://doi.org/10.1016/0006-8993(72)90477-5
- Salazar P, Tapia R. 2015. Epilepsy and hippocampal neurodegeneration induced by glutamate decarboxylase inhibitors in awake rats. Epilepsy Res. 116: 27-33. https://doi.org/10.1016/j.eplepsyres.2015.06.014
- Horton R, Meldrum B. 1973. Seizures induced by allylglycine, 3-mercaptopropionic acid and 4-deoxypyridoxine in mice and photosensitive baboons, and different modes of inhibition of cerebral glutamic acid decarboxylase. Br. J. Pharmacol. 49: 52-63. https://doi.org/10.1111/j.1476-5381.1973.tb08267.x
- Lund P, Tramonti A, De Biase D. 2014. Coping with low pH: molecular strategies in neutralophilic bacteria. FEMS Microbiol. Rev. 38: 1091-1125. https://doi.org/10.1111/1574-6976.12076
- Seo SW, Kim D, O'Brien EJ, Szubin R, Palsson BO. 2015. Decoding genome-wide GadEWX-transcriptional regulatory networks reveals multifaceted cellular responses to acid stress in Escherichia coli. Nat. Commun. 6: 17970.
- Hommais F, Krin E, Coppee JY, Lacroix C, Yeramian E, Danchin A, et al. 2004. GadE (YhiE): a novel activator involved in the response to acid environment in Escherichia coli. Microbiology (Reading). 150: 61-72. https://doi.org/10.1099/mic.0.26659-0
- Tucker DL, Tucker N, Ma Z, Foster JW, Miranda RL, Cohen PS, et al. 2003. Genes of the GadX-GadW regulon in Escherichia coli. J. Bacteriol. 185: 3190-3201. https://doi.org/10.1128/JB.185.10.3190-3201.2003
- Ma Z, Masuda N, Foster JW. 2004. Characterization of EvgAS-YdeO-GadE branched regulatory circuit governing glutamatedependent acid resistance in Escherichia coli. J. Bacteriol. 186: 7378-7389. https://doi.org/10.1128/JB.186.21.7378-7389.2004
- Grass G, Rensing C, Solioz M. 2011. Metallic copper as an antimicrobial surface. Appl. Environ. Microbiol. 77: 1541-1547. https://doi.org/10.1128/AEM.02766-10
- Montero DA, Arellano C, Pardo M, Vera R, Galvez R, Cifuentes M, et al. 2019. Antimicrobial properties of a novel copper-based composite coating with potential for use in healthcare facilities. Antimicrob Resist Infect. Control. 8: 3. https://doi.org/10.1186/s13756-018-0456-4
- Munson GP, Lam DL, Outten FW, O'Halloran TV. 2000. Identification of a copper-responsive two-component system on the chromosome of Escherichia coli K-12. J. Bacteriol. 182: 5864-5871. https://doi.org/10.1128/JB.182.20.5864-5871.2000