DOI QR코드

DOI QR Code

Cooperative Interaction between Acid and Copper Resistance in Escherichia coli

  • Kim, Yeeun (Department of Molecular Science and Technology, Ajou University) ;
  • Lee, Seohyeon (Department of Molecular Science and Technology, Ajou University) ;
  • Park, Kyungah (Department of Molecular Science and Technology, Ajou University) ;
  • Yoon, Hyunjin (Department of Molecular Science and Technology, Ajou University)
  • Received : 2022.01.27
  • Accepted : 2022.03.04
  • Published : 2022.05.28

Abstract

The persistence of pathogenic Escherichia coli under acidic conditions poses a serious risk to food safety, especially in acidic foods such as kimchi. To identify the bacterial factors required for acid resistance, transcriptomic analysis was conducted on an acid-resistant enterotoxigenic E. coli strain and the genes with significant changes in their expression under acidic pH were selected as putative resistance factors against acid stress. These genes included those associated with a glutamate-dependent acid resistance (GDAR) system and copper resistance. E. coli strains lacking GadA, GadB, or YbaST, the components of the GDAR system, exhibited significantly attenuated growth and survival under acidic stress conditions. Accordantly, the inhibition of the GDAR system by 3-mercaptopropionic acid and aminooxyacetic acid abolished bacterial adaptation and survival under acidic conditions, indicating the indispensable role of a GDAR system in acid resistance. Intriguingly, the lack of cueR encoding a transcriptional regulator for copper resistance genes markedly impaired bacterial resistance to acid stress as well as copper. Conversely, the absence of YbaST severely compromised bacterial resistance against copper, suggesting an interplay between acid and copper resistance. These results suggest that a GDAR system can be a promising target for developing control measures to prevent E. coli resistance to acid and copper treatments.

Keywords

Acknowledgement

This work was supported by the Ministry of Food and Drug Safety, Korea, and the Commercializations Promotion Agency for R&D Outcomes (COMPA) grant (2021N100) funded by the Korea government (MSIT).

References

  1. Hernandez-Reyes C, Schikora A. 2013. Salmonella, a cross-kingdom pathogen infecting humans and plants. FEMS Microbiol. Lett. 343: 1-7. https://doi.org/10.1111/1574-6968.12127
  2. Willis C, McLauchlin J, Aird H, Amar C, Barker C, Dallman T, et al. 2020. Occurrence of listeria and Escherichia coli in frozen fruit and vegetables collected from retail and catering premises in England 2018-2019. Int. J. Food Microbiol. 334: 108849. https://doi.org/10.1016/j.ijfoodmicro.2020.108849
  3. Mokoena MP, Omatola CA, Olaniran AO. 2021. Applications of lactic acid bacteria and their bacteriocins against food spoilage microorganisms and foodborne pathogens. Molecules 26: 7055. https://doi.org/10.3390/molecules26227055
  4. Cho J-I, Joo I-S, Park K-S, Han M-K, Son N-R, Jeong S-J, et al. 2014. Characterization of pathogenic Escherichia coli strains linked to an outbreak associated with kimchi consumption in South Korea, 2012. Food Sci. Biotechnol. 23: 209-214. https://doi.org/10.1007/s10068-014-0028-1
  5. Shin J, Yoon K-B, Jeon D-Y, Oh S-S, Oh K-H, Chung GT, et al. 2016. Consecutive outbreaks of enterotoxigenic Escherichia coli O6 in schools in South Korea caused by contamination of fermented vegetable kimchi. Foodborne Pathog. Dis. 13: 535-543. https://doi.org/10.1089/fpd.2016.2147
  6. Croxen MA, Law RJ, Scholz R, Keeney KM, Wlodarska M, Finlay BB. 2013. Recent advances in understanding enteric pathogenic Escherichia coli. Clin. Microbiol. Rev 26: 822-880. https://doi.org/10.1128/CMR.00022-13
  7. Nataro JP, Kaper JB. 1998. Diarrheagenic Escherichia coli. Clin. Microbiol. Rev. 11: 142-201. https://doi.org/10.1128/cmr.11.1.142
  8. Lund P, Tramonti A, De Biase D. 2014. Coping with low pH: molecular strategies in neutralophilic bacteria. FEMS Microbiol. Rev. 38: 1091-1125. https://doi.org/10.1111/1574-6976.12076
  9. Sun Y, Fukamachi T, Saito H, Kobayashi H. 2012. Respiration and the F(1)Fo-ATPase enhance survival under acidic conditions in Escherichia coli. PLoS One 7: e52577. https://doi.org/10.1371/journal.pone.0052577
  10. Lu P, Ma D, Chen Y, Guo Y, Chen GQ, Deng H, et al. 2013. L-glutamine provides acid resistance for Escherichia coli through enzymatic release of ammonia. Cell Res. 23: 635-644. https://doi.org/10.1038/cr.2013.13
  11. Chang YY, Cronan JE, Jr. 1999. Membrane cyclopropane fatty acid content is a major factor in acid resistance of Escherichia coli. Mol. Microbiol. 33: 249-259. https://doi.org/10.1046/j.1365-2958.1999.01456.x
  12. Dahl JU, Koldewey P, Salmon L, Horowitz S, Bardwell JC, Jakob U. 2015. HdeB functions as an acid-protective chaperone in bacteria. J. Biol. Chem. 290: 9950. https://doi.org/10.1074/jbc.A114.612986
  13. Eguchi Y, Ishii E, Hata K, Utsumi R. 2011. Regulation of acid resistance by connectors of two-component signal transduction systems in Escherichia coli. J. Bacteriol. 193: 1222-1228. https://doi.org/10.1128/JB.01124-10
  14. Hengge R. 2009. Proteolysis of sigmaS (RpoS) and the general stress response in Escherichia coli. Res. Microbiol. 160: 667-676. https://doi.org/10.1016/j.resmic.2009.08.014
  15. Aquino P, Honda B, Jaini S, Lyubetskaya A, Hosur K, Chiu JG, et al. 2017. Coordinated regulation of acid resistance in Escherichia coli. BMC Syst. Biol. 11: 1.
  16. Diez-Gonzalez F, Karaibrahimoglu Y. 2004. Comparison of the glutamate-, arginine- and lysine-dependent acid resistance systems in Escherichia coli O157:H7. J Appl. Microbiol. 96: 1237-1244. https://doi.org/10.1111/j.1365-2672.2004.02251.x
  17. Sayed AK, Foster JW. 2009. A 750 bp sensory integration region directs global control of the Escherichia coli GadE acid resistance regulator. Mol. Microbiol. 71: 1435-1450. https://doi.org/10.1111/j.1365-2958.2009.06614.x
  18. Zhao B, Houry WA. 2010. Acid stress response in enteropathogenic gammaproteobacteria: an aptitude for survival. Biochem. Cell Biol. 88: 301-314. https://doi.org/10.1139/O09-182
  19. Rensing C, Grass G. 2003. Escherichia coli mechanisms of copper homeostasis in a changing environment. FEMS Microbiol. Rev. 27: 197-213. https://doi.org/10.1016/S0168-6445(03)00049-4
  20. Djoko KY, Phan M-D, Peters KM, Walker MJ, Schembri MA, McEwan AG. 2017. Interplay between tolerance mechanisms to copper and acid stress in Escherichia coli. Proc. Natl. Acad. Sci. 114: 6818-6823. https://doi.org/10.1073/pnas.1620232114
  21. Blattner FR, Plunkett G, 3rd, Bloch CA, Perna NT, Burland V, Riley M, et al. 1997. The complete genome sequence of Escherichia coli K-12. Science 277: 1453-1462. https://doi.org/10.1126/science.277.5331.1453
  22. Datsenko KA, Wanner BL. 2000. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc. Natl. Acad. Sci. 97: 6640-6645. https://doi.org/10.1073/pnas.120163297
  23. Murphy KC, Campellone KG. 2003. Lambda Red-mediated recombinogenic engineering of enterohemorrhagic and enteropathogenic E. coli. BMC Mol. Biol. 4: 1-12. https://doi.org/10.1186/1471-2199-4-1
  24. Cherepanov PP, Wackernagel W. 1995. Gene disruption in Escherichia coli: TcR and KmR cassettes with the option of Flp-catalyzed excision of the antibiotic-resistance determinant. Gene 158: 9-14. https://doi.org/10.1016/0378-1119(95)00193-A
  25. Thomason LC, Costantino N, Court DL. 2007. E. coli genome manipulation by P1 transduction. Curr. Protoc. Mol. Biol. 79: 1.17.11-11.17.18.
  26. Guzman L-M, Belin D, Carson MJ, Beckwith J. 1995. Tight regulation, modulation, and high-level expression by vectors containing the arabinose PBAD promoter. J. Bacteriol. 177: 4121-4130. https://doi.org/10.1128/jb.177.14.4121-4130.1995
  27. Risso D, Ngai J, Speed TP, Dudoit S. 2014. Normalization of RNA-seq data using factor analysis of control genes or samples. Nat. Biotechnol. 32: 896-902. https://doi.org/10.1038/nbt.2931
  28. Robinson MD, Oshlack A. 2010. A scaling normalization method for differential expression analysis of RNA-seq data. Genome Biol. 11: R25. https://doi.org/10.1186/gb-2010-11-3-r25
  29. Dillies M-A, Rau A, Aubert J, Hennequet-Antier C, Jeanmougin M, Servant N, et al. 2013. A comprehensive evaluation of normalization methods for Illumina high-throughput RNA sequencing data analysis. Brief. Bioinform. 14: 671-683. https://doi.org/10.1093/bib/bbs046
  30. Perez-Llamas C, Lopez-Bigas N. 2011. Gitools: analysis and visualisation of genomic data using interactive heat-maps. PLoS One 6: e19541. https://doi.org/10.1371/journal.pone.0019541
  31. Arenas FA, Diaz WA, Leal CA, Perez-Donoso JM, Imlay JA, Vasquez CC. 2010. The Escherichia coli btuE gene, encodes a glutathione peroxidase that is induced under oxidative stress conditions. Biochem. Biophys. Res. Commun. 398: 690-694. https://doi.org/10.1016/j.bbrc.2010.07.002
  32. De Biase D, Tramonti A, Bossa F, Visca P. 1999. The response to stationary-phase stress conditions in Escherichia coli: role and regulation of the glutamic acid decarboxylase system. Mol. Microbiol. 32: 1198-1211. https://doi.org/10.1046/j.1365-2958.1999.01430.x
  33. Outten FW, Huffman DL, Hale JA, O'Halloran TV. 2001. The independent cue and cus systems confer copper tolerance during aerobic and anaerobic growth in Escherichia coli. J. Biol. Chem. 276: 30670-30677. https://doi.org/10.1074/jbc.M104122200
  34. Lyu C, Zhao W, Peng C, Hu S, Fang H, Hua Y, et al. 2018. Exploring the contributions of two glutamate decarboxylase isozymes in Lactobacillus brevis to acid resistance and gamma-aminobutyric acid production. Microb. Cell Fact. 17: 180. https://doi.org/10.1186/s12934-018-1029-1
  35. Kimura R, Kasamatsu A, Koyama T, Fukumoto C, Kouzu Y, Higo M, et al. 2013. Glutamate acid decarboxylase 1 promotes metastasis of human oral cancer by β-catenin translocation and MMP7 activation. BMC Cancer 13: 1-11. https://doi.org/10.1186/1471-2407-13-1
  36. Lamar Jr C. 1970. Mercaptopropionic acid: a convulsant that inhibits glutamate decarboxylase 1. J. Neurochem. 17: 165-170. https://doi.org/10.1111/j.1471-4159.1970.tb02197.x
  37. Grossfeld RM, Yancey SW, Baxter CF. 1984. Inhibitors of crayfish glutamic acid decarboxylase. Neurochem. Res. 9: 947-963. https://doi.org/10.1007/BF00964526
  38. Yin Y, Cheng C, Fang W. 2018. Effects of the inhibitor of glutamate decarboxylase on the development and GABA accumulation in germinating fava beans under hypoxia-NaCl stress. RSC Adv. 8: 20456-20461. https://doi.org/10.1039/C8RA03940B
  39. Snider Jr DE. 1980. Pyridoxine supplementation during isoniazid therapy. Tubercle 61: 191-196. https://doi.org/10.1016/0041-3879(80)90038-0
  40. Wood J, Peesker S. 1972. A correlation between changes in GABA metabolism and isonicotinic acid hydrazide-induced seizures. Brain Res. 45: 489-498. https://doi.org/10.1016/0006-8993(72)90477-5
  41. Salazar P, Tapia R. 2015. Epilepsy and hippocampal neurodegeneration induced by glutamate decarboxylase inhibitors in awake rats. Epilepsy Res. 116: 27-33. https://doi.org/10.1016/j.eplepsyres.2015.06.014
  42. Horton R, Meldrum B. 1973. Seizures induced by allylglycine, 3-mercaptopropionic acid and 4-deoxypyridoxine in mice and photosensitive baboons, and different modes of inhibition of cerebral glutamic acid decarboxylase. Br. J. Pharmacol. 49: 52-63. https://doi.org/10.1111/j.1476-5381.1973.tb08267.x
  43. Lund P, Tramonti A, De Biase D. 2014. Coping with low pH: molecular strategies in neutralophilic bacteria. FEMS Microbiol. Rev. 38: 1091-1125. https://doi.org/10.1111/1574-6976.12076
  44. Seo SW, Kim D, O'Brien EJ, Szubin R, Palsson BO. 2015. Decoding genome-wide GadEWX-transcriptional regulatory networks reveals multifaceted cellular responses to acid stress in Escherichia coli. Nat. Commun. 6: 17970.
  45. Hommais F, Krin E, Coppee JY, Lacroix C, Yeramian E, Danchin A, et al. 2004. GadE (YhiE): a novel activator involved in the response to acid environment in Escherichia coli. Microbiology (Reading). 150: 61-72. https://doi.org/10.1099/mic.0.26659-0
  46. Tucker DL, Tucker N, Ma Z, Foster JW, Miranda RL, Cohen PS, et al. 2003. Genes of the GadX-GadW regulon in Escherichia coli. J. Bacteriol. 185: 3190-3201. https://doi.org/10.1128/JB.185.10.3190-3201.2003
  47. Ma Z, Masuda N, Foster JW. 2004. Characterization of EvgAS-YdeO-GadE branched regulatory circuit governing glutamatedependent acid resistance in Escherichia coli. J. Bacteriol. 186: 7378-7389. https://doi.org/10.1128/JB.186.21.7378-7389.2004
  48. Grass G, Rensing C, Solioz M. 2011. Metallic copper as an antimicrobial surface. Appl. Environ. Microbiol. 77: 1541-1547. https://doi.org/10.1128/AEM.02766-10
  49. Montero DA, Arellano C, Pardo M, Vera R, Galvez R, Cifuentes M, et al. 2019. Antimicrobial properties of a novel copper-based composite coating with potential for use in healthcare facilities. Antimicrob Resist Infect. Control. 8: 3. https://doi.org/10.1186/s13756-018-0456-4
  50. Munson GP, Lam DL, Outten FW, O'Halloran TV. 2000. Identification of a copper-responsive two-component system on the chromosome of Escherichia coli K-12. J. Bacteriol. 182: 5864-5871. https://doi.org/10.1128/JB.182.20.5864-5871.2000