Acknowledgement
This work was supported by the Applied Basic Research Frontier Foundation of Wuhan, China (2020020601012265), Major Technological Innovation Project of Hubei Province, China (2019ABA114), Natural Science Foundation of Hubei Province, China (2019CFB588), and Special Funds for Local Science and Technology Development guided by the central government of China (2019ZYYD030).
References
- Taha M, Foda M, Shahsavari E, Aburto-Medina A, Adetutu E, Ball A. 2016. Commercial feasibility of lignocellulose biodegradation: possibilities and challenges. Curr. Opin. Biotechnol. 38: 190-197. https://doi.org/10.1016/j.copbio.2016.02.012
- Kaushal G, Kumar J, Sangwan RS, Singh SP. 2018. Metagenomic analysis of geothermal water reservoir sites exploring carbohydrate-related thermozymes. Int. J. Biol. Macromol. 119: 882-895. https://doi.org/10.1016/j.ijbiomac.2018.07.196
- Wang C, Dong D, Wang H, Muller K, Qin Y, Wang H, Wu W. 2016. Metagenomic analysis of microbial consortia enriched from compost: new insights into the role of actinobacteria in lignocellulose decomposition. Biotechnol. Biofuels 9: 22. https://doi.org/10.1186/s13068-016-0440-2
- Desiderato JG, Alvarenga DO, Constancio MT, Alves L, Varani AM. 2018. The genome sequence of Dyella jiangningensis FCAV SCS01 from a lignocellulose-decomposing microbial consortium metagenome reveals potential for biotechnological applications. Genet. Mol. Biol. 41: 507-513. https://doi.org/10.1590/1678-4685-gmb-2017-0155
- Wang Y, Wang C, Chen Y, Chen B, Guo P, Cui Z. 2021. Metagenomic insight into lignocellulose degradation of the thermophilic microbial consortium TMC7. J. Microbiol. Biotechnol. 31: 1123-1133. https://doi.org/10.4014/jmb.2106.06015
- Juturu V, Wu JC. 2013. Insight into microbial hemicellulases other than xylanases: a review. J. Chem. Technol. Biotechnol. 88: 353-363. https://doi.org/10.1002/jctb.3969
- Xie J, Wang B, He Z, Pan L. 2020. A thermophilic fungal GH36 α-galactosidase from Lichtheimia ramosa and its synergistic hydrolysis of locust bean gum. Carbohydr. Res. 491: 107911. https://doi.org/10.1016/j.carres.2020.107911
- Bhatia S, Singh A, Batra N, Singh J. 2020. Microbial production and biotechnological applications of α-galactosidase. Int. J. Biol. Macromol. 150: 1294-1313. https://doi.org/10.1016/j.ijbiomac.2019.10.140
- Xu Y, Wang YH, Liu TQ, Zhang H, Zhang H, Li J. 2018. The GlaA signal peptide substantially increases the expression and secretion of α-galactosidase in Aspergillus niger. Biotechnol. Lett. 40: 949-955. https://doi.org/10.1007/s10529-018-2540-5
- Patil AGG, Kumar SKP, Mulimani VH, Veeranagouda Y, Lee K. 2010. α-galactosidase from Bacillus megaterium VHM1 and its application in removal of flatulence-causing factoers from soymilk. J. Microbiol. Biotechnol. 20: 1546-1554. https://doi.org/10.4014/jmb.0912.12012
- Lee J, Park I, Cho J. 2013. Immobilization of the Antarctic Bacillus sp. LX-1 alpha-galactosidase on eudragit L-100 for the production of a functional feed additive. Asian-Australas. J. Anim. Sci. 26: 552-557. https://doi.org/10.5713/ajas.2012.12557
- Zhang J, Song G, Mei Y, Li R, Zhang H, Liu Y. 2019. Present status on removal of raff inose family oligosaccharides-a review. Czech J. Food Sci. 37: 141-154. https://doi.org/10.17221/472/2016-cjfs
- Gao H, Li S, Tan Y, Ji S, Wang Y, Bao G, Bao G, Xu L, Gong F. 2013. Application of α-N-acetylgalactosaminidase and α-galactosidase in AB to O red blood cells conversion. Artif. Cells Nanomed. Biotechnol. 41: 32-36. https://doi.org/10.3109/10731199.2012.724422
- Aguilar-Moncayo M, Takai T, Higaki K, Mena-Barragan T, Hirano Y, Yura K, et al. 2012. Tuning glycosidase inhibition through aglycone interactions: pharmacological chaperones for Fabry disease and GM 1 gangliosidosis. Chem. Commun. 48: 6514-6516. https://doi.org/10.1039/c2cc32065g
- Katrolia P. 2013. Biotechnological potential of microbial α-galactosidases. Crit. Rev. Biotechnol. 34: 307-317. https://doi.org/10.3109/07388551.2013.794124
- Zhang D, Wang Y, Zhang C, Zheng D, Guo P, Cui Z. 2018. Characterization of a thermophilic lignocellulose-degrading microbial consortium with high extracellular xylanase activity. J. Microbiol. Biotechnol. 28: 305-313. https://doi.org/10.4014/jmb.1709.09036
- Bradford MM. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254. https://doi.org/10.1006/abio.1976.9999
- Semenova EM, Sokolova DS, Grouzdev DS, Poltaraus AB, Vinokurova NG, Tourova TP, et al. 2019. Geobacillus proteiniphilus sp. nov., a thermophilic bacterium isolated from a high-temperature heavy oil reservoir in China. Int. J. Syst. Evol. Microbiol. 69: 3001-3008. https://doi.org/10.1099/ijsem.0.003486
- Ademark P, Larsson M, Tjerneld F, Stalbrand H. 2001. Multiple α-galactosidases from Aspergillus niger: purification, characterization and substrate specificities. Enzyme Microb. Technol. 29: 441-448. https://doi.org/10.1016/S0141-0229(01)00415-X
- Maruta A, Yamane M, Matsubara M, Suzuki S, Nakazawa M, Ueda M, et al. 2017. A novel α-galactosidase from Fusarium oxysporum and its application in determining the structure of the gum arabic side chain. Enzyme Microb. Technol. 103: 25-33. https://doi.org/10.1016/j.enzmictec.2017.04.006
- Wang W. 2015. The Molecular Detection of Corynespora Cassiicola on Cucumber by PCR Assay Using DNAman Software and NCBI. 9th International Conference on Computer and Computing Technologies in Agriculture (CCTA). pp. 248-258. 10.1007/978-3-319-48354-2_26. hal-01614171.
- Armenteros JJA, Tsirigos KD, Sonderby CK, Petersen TN, Winther O, Brunak S, et al. 2019. SignalP 5.0 improves signal peptide predictions using deep neural networks. Nat. Biotechnol. 37l: 420-423.
- Bateman A, Coin L, Durbin R, Finn RD, Hollich V, Griffiths-Jones S, et al. 2004. The Pfam protein families database. Nucleic Acids Res. 32(Database issue): D138-141. https://doi.org/10.1093/nar/gkh121
- Guex N, Peitsch MC. 1997. SWISS-MODEL and the Swiss-Pdb viewer: an environment for comparative protein modeling. Electrophoresis 18: 2714-2723. https://doi.org/10.1002/elps.1150181505
- Ulya M, Oesman F, Iqbalsyah TM. 2019. Low molecular weight alkaline thermostable α-amylase from Geobacillus sp. nov. Heliyon 5: e02171. https://doi.org/10.1016/j.heliyon.2019.e02171
- Semenova EM, Sokolova DS, Grouzdev DS, Poltaraus AB, Vinokurova NG, Tourova TP, et al. 2019. Geobacillus proteiniphilus sp. nov., a thermophilic bacterium isolated from a high-temperature heavy oil reservoir in China. Int. J. Syst. Evol. Microbiol. 69: 3001-3008. https://doi.org/10.1099/ijsem.0.003486
- Johnson M, Zaretskaya I, Raytselis Y, Merezhuk Y, McGinnis S, Madden TL. 2008. NCBI BLAST: a better web interface. Nucleic Acids Res. 36: 5-9.
- Merceron R, Foucault M, Haser R, Mattes R, Watzlawick H, Gouet P. 2012. The molecular mechanism of thermostable α-galactosidases AgaA and AgaB explained by X-ray crystallography and mutational studies. J. Biol. Chem. 287: 39642-39652. https://doi.org/10.1074/jbc.M112.394114
- Zhang B, Chen Y, Li Z, Lu W, Cao Y. 2011. Cloning and functional expression of α-galactosidase cDNA from Penicillium janczewskii zaleski. Biologia 66: 205-212. https://doi.org/10.2478/s11756-011-0014-5
- Cao Y, Wang Y, Meng K, Bai Y, Shi P, Luo H, et al. 2009. A novel protease-resistant α-galactosidase with high hydrolytic activity from Gibberella sp. F75: gene cloning, expression, and enzymatic characterization. Appl. Microbiol. Biotechnol. 83: 875-884. https://doi.org/10.1007/s00253-009-1939-2
- Fridjonsson O, Watzlawick H, Gehweiler A, Mattes R. 1999. Thermostable α-galactosidase from Bacillus stearothermophilus NUB3621: cloning, sequencing and characterization. FEMS Microbiol. Lett. 176: 147-153. https://doi.org/10.1016/S0378-1097(99)00231-1
- Fredslund F, Hachem MA, Larsen RJ, Sorensen PG, Coutinho PM, Lo Leggio L, et al. 2011. Crystal structure of α-galactosidase from Lactobacillus acidophilus NCFM: insight into tetramer formation and substrate binding. J. Mol. Biol. 412: 466-480. https://doi.org/10.1016/j.jmb.2011.07.057
- Bruel L, Sulzenbacher G, Cervera Tison M, Pujol A, Nicoletti C, Perrier J, et al. 2011. α-Galactosidase/sucrose kinase (AgaSK), a novel bifunctional enzyme from the human microbiome coupling galactosidase and kinase activities. J. Biol. Chem. 286: 40814-40823. https://doi.org/10.1074/jbc.M111.286039
- Dey PM. 1984. Characteristic features of an α-galactosidase from mung beans. Eur. J. Biochem. 140: 385-390. https://doi.org/10.1111/j.1432-1033.1984.tb08113.x
- Liljestoum PL, Liljestrom P. 1987. Nucleotide sequence of the melA gene, coding for α-galactosidase in Escherichia coli K-12. Nucleic Acids Res. 15: 2213-2220. https://doi.org/10.1093/nar/15.5.2213
- Jang JM, Yang Y, Wang R, Bao H, Yuan H, Yang J. 2019. Characterization of a high performance α-galactosidase from Irpex lacteus and its usage in removal of raffinose family oligosaccharides from soymilk. Int. J. Biol. Macromol. 131: 1138-1146. https://doi.org/10.1016/j.ijbiomac.2019.04.060
- Junior JCB, Viana PA, de Rezende ST, Soares NDFF, Guimaraes VM. 2018. Immobilization of an alpha-galactosidase from Debaryomyces hansenni UFV-1 in cellulose film and its appilication in oligosaccharides hydrolysis. Food Bioprod. Process 111: 30-36. https://doi.org/10.1016/j.fbp.2018.06.001
- Huang Y, Zhang H, Ben P, Duan Y, Lu M, Li Z, et al. 2018. Characterization of a novel GH36 α-galactosidase from Bacillus megaterium and its application in degradation of raffinose family oligosaccharides. Int. J. Biol. Macromol. 108: 98-104. https://doi.org/10.1016/j.ijbiomac.2017.11.154
- Lee A, Choi KH, Yoon D, Kim S, Cha J. 2017. Characterization of a thermostable glycoside hydrolase family 36 α-galactosidase from Caldicellulosiruptor bescii. J. Biosci. Bioeng. 124: 289-295. https://doi.org/10.1016/j.jbiosc.2017.04.011
- Zhou J, Lu Q, Zhang R, Wang Y, Wu Q, Li J, et al. 2016. Characterization of two glycoside hydrolase family 36 α-galactosidases: Novel transglycosylation activity, lead-zinc tolerance, alkaline and multiple pH optima, and low-temperature activity. Food Chem. 194: 156-166. https://doi.org/10.1016/j.foodchem.2015.08.015
- Bhatia S, Singh A, Batra N, Singh J. 2020. Microbial production and biotechnological applications of α-galactosidase. Int. J. Biol. Macromol. 150: 1294-1313. https://doi.org/10.1016/j.ijbiomac.2019.10.140
- Aliyu H, Lebre P, Blom J, Cowan D, De Maayer P. 2016. Phylogenomic re-assessment of the thermophilic genus Geoobacillus. Syst. Appl. Microbiol. 39: 527-533. https://doi.org/10.1016/j.syapm.2016.09.004
- Liu J, Sun D, Zhu J, Liu C, Liu W. 2021. Carbohydrate-binding modules targeting branched polysaccharides: overcoming side-chain recalctirance in a non-catalytic apporoch. Bioresour. Bioprocess 8: 1-11. https://doi.org/10.1186/s40643-020-00357-z
- Tailford LE, Ducros VMA, Flint JE, Roberts SM, Morland C, Zechel DL, et al. 2009. Understanding how diverse β-mannanase recognize heterogeneous substrates. Biochemistry 48: 7009-7018. https://doi.org/10.1021/bi900515d
- Brito IL. 2021. Examining horizontal gene transfer in microbial communities. Nat. Rev. Microbiol. 19: 442-453. https://doi.org/10.1038/s41579-021-00534-7