DOI QR코드

DOI QR Code

Fabrication, Microstructure and Adhesion Properties of BCuP-5 Filler Metal/Ag Plate Clad Material by Using High Velocity Oxygen Fuel Thermal Spray Process

고속 화염 용사 공정을 이용한 스위칭 소자용 BCuP-5 filler 금속/Ag 기판 클래드 소재의 제조, 미세조직 및 접합 특성

  • Joo, Yeun A (Department of Materials Science and Engineering, Inha University) ;
  • Cho, Yong-Hoon (Department of Materials Science and Engineering, Inha University) ;
  • Park, Jae-Sung (LT Metal LTD.) ;
  • Lee, Kee-Ahn (Department of Materials Science and Engineering, Inha University)
  • Received : 2022.06.14
  • Accepted : 2022.06.23
  • Published : 2022.06.28

Abstract

In this study, a new manufacturing process for a multilayer-clad electrical contact material is suggested. A thin and dense BCuP-5 (Cu-15Ag-5P filler metal) coating layer is fabricated on a Ag plate using a high-velocity oxygen-fuel (HVOF) process. Subsequently, the microstructure and bonding properties of the HVOF BCuP-5 coating layer are evaluated. The thickness of the HVOF BCuP-5 coating layer is determined as 34.8 ㎛, and the surface fluctuation is measured as approximately 3.2 ㎛. The microstructure of the coating layer is composed of Cu, Ag, and Cu-Ag-Cu3P ternary eutectic phases, similar to the initial BCuP-5 powder feedstock. The average hardness of the coating layer is 154.6 HV, which is confirmed to be higher than that of the conventional BCuP-5 alloy. The pull-off strength of the Ag/BCup-5 layer is determined as 21.6 MPa. Thus, the possibility of manufacturing a multilayer-clad electrical contact material using the HVOF process is also discussed.

Keywords

Acknowledgement

본 연구는 산업통상자원부의 첨단 신소재 기반 3D 프린팅 전문인력양성 사업(P0002007)의 지원으로 수행되었으며 이에 감사드립니다.

References

  1. F. Findik and H. Uzun: Mater. Des., 24 (2003) 489. https://doi.org/10.1016/S0261-3069(03)00125-0
  2. M. Madej: Arch. Metall. Mater., 57 (2012) 605. https://doi.org/10.2478/v10172-012-0064-x
  3. A. Ksiazkiewicz: Poznan University of Technology Academic Journals. Electrical Engineering, 82 (2015) 207.
  4. H. Yu, Y. Sun, S. P. Alpay and M. Aindow: J. Mater. Sci., 50 (2015) 324. https://doi.org/10.1007/s10853-014-8591-7
  5. W. K. Yoon and S. H. Yang: Korea, KR 101394617 (2014).
  6. G. B. Kwon and T. W. Nam: J. Korea Foundry Soc., 25 (2005) 226.
  7. H. Kang, Y. Kang and J. Lee: J. Powder Mater., 13 (2006) 18. https://doi.org/10.4150/KPMI.2006.13.1.018
  8. M. Magnani, P. H. Suegama, N. Espallargas, C. S. Fugivara, S. Dosta, J. M. Guilemany and A. V. Benedetti: J. Therm. Spray Techn., 18 (2009) 353. https://doi.org/10.1007/s11666-009-9305-6
  9. L. N. Moskowitz: J. Therm. Spray Techn., 2 (1993) 21. https://doi.org/10.1007/BF02647419
  10. P. Gavendova, J. Cizek, J. Cupera, M. Hasegawa and I. Dlouhy: Proc. Mat. Sci., 12 (2016) 89. https://doi.org/10.1016/j.mspro.2016.03.016
  11. M. Oksa, E. Turunen, T. Suhonen, T. Varis and S. Hannula: Coatings, 1 (2011) 17. https://doi.org/10.3390/coatings1010017
  12. L. Y. Nan, W. C. Wen, P. Z. Long, Y. J. Chun and L. Z. Song: T. Nonferr. Metal Soc., 21 (2011) s394. https://doi.org/10.1016/S1003-6326(11)61613-0
  13. T. Takemoto, I. Okamoto and J. Matsumura: Trans. J.W.R.I., 16 (1987) 301.
  14. M. B. Karamis, A. Tasdemirci and F. Nair: J. Mater. Process. Tech., 141 (2003) 302. https://doi.org/10.1016/S0924-0136(03)00281-4
  15. S. Amin and H. Panchal: Int. J. Cur. Trends Eng. Res., 2 (2016) 556.
  16. A. Valarezo, W. B. Choi, W. Chi, A. Gouldstone and S. Sampath: J. Therm. Spray Tech., 19 (2010) 852. https://doi.org/10.1007/s11666-010-9492-1
  17. N. M. Noordin and K. Y. Cheong: Procedia Eng., 184 (2017) 611. https://doi.org/10.1016/j.proeng.2017.04.125