DOI QR코드

DOI QR Code

Spark Plasma Sintering Method to Replace Carburizing Process

침탄 공정 대체를 위한 방전 플라즈마 소결 방법

  • Jeon, Junhyub (Division of Advanced Materials Engineering, Research Center for Advanced Materials Development, Jeonbuk National University) ;
  • Lee, Junho (Division of Advanced Materials Engineering, Research Center for Advanced Materials Development, Jeonbuk National University) ;
  • Seo, Namhyuk (Division of Advanced Materials Engineering, Research Center for Advanced Materials Development, Jeonbuk National University) ;
  • Son, Seung Bae (Division of Advanced Materials Engineering, Research Center for Advanced Materials Development, Jeonbuk National University) ;
  • Jung, Jae-Gil (Division of Advanced Materials Engineering, Research Center for Advanced Materials Development, Jeonbuk National University) ;
  • Lee, Seok-Jae (Division of Advanced Materials Engineering, Research Center for Advanced Materials Development, Jeonbuk National University)
  • 전준협 (전북대학교 신소재공학부) ;
  • 이준호 (전북대학교 신소재공학부) ;
  • 서남혁 (전북대학교 신소재공학부) ;
  • 손승배 (전북대학교 신소재공학부) ;
  • 정재길 (전북대학교 신소재공학부) ;
  • 이석재 (전북대학교 신소재공학부)
  • Received : 2022.06.14
  • Accepted : 2022.06.27
  • Published : 2022.06.28

Abstract

An alternative fabrication method for carburizing steel using spark plasma sintering (SPS) is investigated. The sintered carburized sample, which exhibits surface modification effects such as carburizing, sintered Fe, and sintered Fe-0.8 wt.%C alloys, is fabricated using SPS. X-ray diffraction and micro Vickers tests are employed to confirm the phase and properties. Finite element analysis is performed to evaluate the change in hardness and analyze the carbon content and residual stress of the carburized sample. The change in the hardness of the carburized sample has the same tendency to predict hardness. The difference in hardness between the carburized sample and the predicted value is also discussed. The carburized sample exhibits a compressive residual stress at the surface. These results indicate that the carburized sample experiences a surface modification effect without carburization. Field emission scanning electron microscopy is employed to verify the change in phase. A novel fabrication method for altering the carburization is successfully proposed. We expect this fabrication method to solve the problems associated with carburization.

Keywords

Acknowledgement

This work was supported by a Korea Institute for Advancement of Technology grant, funded by the Korea Government (MOTIE) (P0002019), as part of the Competency Development Program for Industry Specialists.

References

  1. D. V. Doane: J. Heat Treat., 8 (1990) 33. https://doi.org/10.1007/BF02833065
  2. M. A. Grossmann and E. C. Bain: Principles of heat treatment, American Society for Metals (Ed. 5), Ohio (1917).
  3. G. E. Totten: Steel Heat Treatment: Metallurgy and Technologies, CRC Press Taylor & Francis Group, Boca Raton, London, New York (2007).
  4. T. V. Rajan and C. P. Sharma: Heat treatment, principles and techniques, Prentice-Hall of India, New Delhi (2006).
  5. H.-G. Kim: J. Kor. Soc. Heat Treatment, 2 (1989) 8.
  6. S. Wei, G. Wang, X. Zhao, X. Zhang and Y. Rong: J. Mater. Eng. Perform., 23 (2014) 545. https://doi.org/10.1007/s11665-013-0762-1
  7. P. F. Stratton, S. Bruce and V. Cheetham: BHM Berg-und Huttenmannische, 151 (2006) 451.
  8. M. Y. Wey: J. Kor. Soc. Heat Treatment, 18 (2005) 190.
  9. B. H. Jung and M. G. Kim: J. Kor. Soc. Heat Treatment, 21 (2008) 42.
  10. B. H. Jung: J. Kor. Soc. Heat Treatment, 23 (2010) 34. https://doi.org/10.12656/JKSHT.2010.23.1.034
  11. R. Baccino, F. Moret, F. Pellerin, D. Guichard and G. Raisson: Mater. Des., 21 (2000) 345. https://doi.org/10.1016/S0261-3069(99)00093-X
  12. M. T. Andani, N. S. Moghaddam, C. Haberland, D. Dean, M. J. Miller and M. Elahinia: Acta Biomater., 10 (2014) 4058. https://doi.org/10.1016/j.actbio.2014.06.025
  13. G. Kim, J. Jeon, N. Seo, S. Choi, M. S. Oh, S. B. Son and S. J. Lee: Arch. Metall. Mater., 66 (2021) 759.
  14. N. Seo, G. Kim, S. Choi, J. Jeon, M. -S. Oh, S. B. Son and S. J. Lee: Powder Metall., 64 (2021) 180. https://doi.org/10.1080/00325899.2021.1894690
  15. J. Park, J. Jeon, N. Seo, G. Kim, S. B. Son, and S. J. Lee: J. Powder Mater., 28 (2021) 336. https://doi.org/10.4150/KPMI.2021.28.4.336
  16. N. Seo, J. Jeon, G. Kim, J. Park, S. B. Son and S. J. Lee: J. Powder Mater., 28 (2021) 221. https://doi.org/10.4150/KPMI.2021.28.3.221
  17. Y. Kang, S. Yoon, M. Kim and S. J. Lee: Appl. Sci. Converg. Technol., 23 (2014) 151. https://doi.org/10.5757/ASCT.2014.23.3.151
  18. H. Bhadeshia and R. Honeycombe: Steels: Microstructure and Properties, Butterworth-Heinemann (Ed. 3), Oxford (2006).
  19. K. Widanka: Powder Metall., 53 (2010) 318. https://doi.org/10.1179/174329009X449332
  20. J. Capek and D. Vojtech: Mater. Sci. Eng. C, 43 (2014) 494. https://doi.org/10.1016/j.msec.2014.06.046