DOI QR코드

DOI QR Code

전위 장벽에 따른 4H-SiC MPS 소자의 전기적 특성과 깊은 준위 결함

Electrical Characteristics and Deep Level Traps of 4H-SiC MPS Diodes with Different Barrier Heights

  • Byun, Dong-Wook (Dept. of Electronic materials Engineering, Kwangwoon University) ;
  • Lee, Hyung-Jin (Dept. of Electronic materials Engineering, Kwangwoon University) ;
  • Lee, Hee-Jae (Dept. of Electronic materials Engineering, Kwangwoon University) ;
  • Lee, Geon-Hee (Dept. of Electronic materials Engineering, Kwangwoon University) ;
  • Shin, Myeong-Cheol (Dept. of Electronic materials Engineering, Kwangwoon University) ;
  • Koo, Sang-Mo (Dept. of Electronic materials Engineering, Kwangwoon University)
  • 투고 : 2022.06.07
  • 심사 : 2022.06.22
  • 발행 : 2022.06.30

초록

서로 다른 PN 비율과 금속화 어닐링 온도에 의해 장벽 높이가 다른 4H-SiC 병합 PiN Schottky(MPS) 다이오드의 전기적 특성과 심층 트랩을 조사했다. MPS 다이오드의 장벽 높이는 IV 및 CV 특성에서 얻었다. 전위장벽 높이가 낮아짐에 따라 누설 전류가 증가하여 10배의 전류가 발생하였다. 또한, 심층 트랩(Z1/2 및 RD1/2)은 4개의 MPS 다이오드에서 DLTS 측정을 통해 밝혀졌다. DLTS 결과를 기반으로, 트랩 에너지 준위는 낮은 장벽 높이와 함께 22~28%의 얕은 수준으로 확인되었다. 이는 쇼트키 장벽 높이에 대해 DLTS에 의해 결정된 결함 수준 및 농도의 의존성을 확인할 수 있다.

We investigated electrical properties and deep level traps in 4H-SiC merged PiN Schottky (MPS) diodes with different barrier heights by different PN ratios and metallization annealing temperatures. The barrier heights of MPS diodes were obtained in IV and CV characteristics. The leakage current increased with the lowering barrier height, resulting in 10 times larger current. Additionally, the deep level traps (Z1/2 and RD1/2) were revealed by deep level transient spectroscopy (DLTS) measurement in four MPS diodes. Based on DLTS results, the trap energy levels were found to be shallow level by 22~28% with lower barrier height It could confirm the dependence of the defect level and concentration determined by DLTS on the Schottky barrier height and may lead to incorrect results regarding deep level trap parameters with small barrier heights.

키워드

과제정보

This work was supported by Korea Institute for Advancement of Technology (KIAT) grant funded by the Korea Government (MOTIE) (P0012451), Technology Innovation Program (20003540) and the excellent researcher support project of Kwangwoon University in 2022.

참고문헌

  1. Baliga, B. J. "Gallium nitride and silicon carbide power devices," World Scientific Publishing Company. 2016. DOI: 10.1142/10027
  2. Shur, M. "Wide band gap semiconductor technology: State-of-the-art," Solid-State Electronics, Vol.155, pp.65-75. 2019. DOI: 10.1016/j.sse.2019.03.020
  3. Pan, Y., Tian, L., Wu, H., Li, Y., & Yang, F. "3.3 kV 4H-SiC JBS diodes with single-zone JTE termination," Microelectronic Engineering, Vol.181, pp.10-15. 2017. DOI: 10.1016/j.mee.2017.05.054
  4. Liu, L., Wu, J., Ren, N., Guo, Q., & Sheng, K. "1200-V 4H-SiC merged pin Schottky diodes with high avalanche capability," IEEE Transactions on Electron Devices, Vol.67, No.9, pp.3679-3684, 2020. DOI: 10.1109/TED.2020.3007136
  5. Sharma, R. K., Hazdra, P., & Popelka, S. "The effect of light ion irradia-tion on 4H-SiC MPS power diode characteristics Experiment and simulation," IEEE Transactions on Nuclear Science, Vol.62, No.2, pp.534-541, 2015. DOI: 10.1109/TNS.2015.2395712
  6. Son, W. Y., Shin, M. C., Schweitz, M., Lee, S. K., & Koo, S. M. "Al Im-plantation and Post Annealing Effects in n-Type 4H-SiC," Journal of Nanoelectron-ics and Optoelectronics, Vol.15, No.7, pp.777-782, 2020. DOI: 10.1166/jno.2020.2818
  7. Sasaki, S., Kawahara, K., Feng, G., Alfieri, G., & Kimoto, T. "Major deep levels with the same microstructures observed in n-type 4H-SiC and 6H-SiC," Journal of Applied Physics, Vol.109, No.1, pp.013705. 2011. DOI: 10.1063/1.3528124
  8. Kawahara, K., Suda, J., Pensl, G., & Kimoto, T. "Reduction of deep levels generated by ion implantation into n-and p-type 4H-SiC," Journal of Applied Physics, Vol.108, No.3, pp.033706. 2010. DOI: 10.1063/1.3456159
  9. Jiang, Y., Sung, W., Song, X., Ke, H., Liu, S., Baliga, B. J., ... & Van Brunt, E. "10kV SiC MPS diodes for high temperature applications." In 2016 28th International Symposium on Power Semiconductor Devices and ICs (ISPSD) IEEE. pp.43-46, 2016. DOI: 10.1109/ISPSD.2016.7520773
  10. Perez-Tomas, A., Brosselard, P., Hassan, J., Jorda, X., Godignon, P., Placidi, M., ... & Bergman, J. P. "Schottky versus bipolar 3.3 kV SiC diodes," Semiconductor Science and Technology, Vol.23, No.12, pp.125004, 2008. DOI: 10.1088/0268-1242/23/12/125004
  11. Cheung, S. K., & Cheung, N. W. "Extraction of Schottky diode parame-ters from forward current-voltage characteristics," Applied physics letters, Vol.49, No.2, pp.85-87. 1986. DOI: 10.1063/1.97359
  12. Padovani FA, Stratton R. Field and "Thermionic-field emission in Schottky Barriers," Solid-State Electron, Vol.9, No.7, pp.695-707, 1966. DOI: 10.1142/9789814503464_0053
  13. Roccaforte F, La Via F, Raineri V, Pierobon R, Zanoni E. "Richardson's constant in inhomogeneous silicon carbide Schottky contacts," J Appl Phys, Vol.93, No.11, pp.9137-44, 2003. DOI: 10.1063/1.1573750
  14. Lee, Y. J., Cho, S., Seo, J. H., Min, S. J., An, J. I., Oh, J. M., ... & Lee, D. "Electrical Characteristics of 4H-SiC Junction Barrier Schottky Diode," Journal of the Korean Institute of Electrical and Electronic Material Engineers, Vol.31, No.6, pp. 367-371, 2018. DOI: 10.4313/JKEM.2018.31.6.367
  15. Bellocchi, G., Vivona, M., Bongiorno, C., Badala, P., Bassi, A., Rascuna, S., & Roccaforte, F. "Barrier height tuning in Ti/4H-SiC Schottky diodes," Solid-State Electronics, Vol.186, pp.108042, 2021. DOI: 10.1016/j.sse.2021.108042
  16. Kyoung, S., Jung, E. S., & Sung, M. Y. "Post-annealing processes to improve inhomogeneity of Schottky barrier height in Ti/Al 4H-SiC Schottky barrier diode," Microelectronic Engineering, Vol.154, pp.69-73, 2016. DOI: 10.1016/j.mee.2016.01.013
  17. Pascu, R., Craciunoiu, F., Kusko, M., Draghici, F., Dinescu, A., & Danila, M. "The effect of the post-metallization annealing of Ni/n-type 4H-SiC Schottky contact," In CAS 2012 (International Semiconductor Conference) Vol.2, pp.457-460, 2012. DOI: 10.1109/SMICND.2012.6400732
  18. Skromme, B. J., Luckowski, E., Moore, K., Bhatnagar, M., Weitzel, C. E., Ge-hoski, T., & Ganser, D. "Electrical characteristics of Schottky barriers on 4H-SiC: The effects of barrier height nonuniformity," Journal of Electronic Materials, Vol.29, No.3, pp.376-383. 2000. DOI: 10.1007/s11664-000-0081-9
  19. Cabello, M., Soler, V., Rius, G., Montserrat, J., Rebollo, J., & Godignon, P. "Advanced processing for mobility improvement in 4H-SiC MOSFETs," A review. Materials Science in Semiconductor Processing, Vol.78, pp.22-31. 2018. DOI: 10.1016/j.mssp.2017.10.030
  20. R. T. Tung, "Electron transport at metal-semiconductor interfaces: general theory," Phys. Rev. B Vol.45, pp.13509, 1992. DOI: 10.1103/PhysRevB.45.13509
  21. Yakuphanoglu, F., & Senkal, B. F. "Electronic and thermoelectric prop-erties of polyaniline organic semiconductor and electrical characterization of Al/PANI MIS diode," The Journal of Physical Chemistry C, Vol.111, No.4, pp.1840-1846, 2007. DOI: 10.1021/jp0653050
  22. Dabrowska-Szata, M., Sochacki, M., & Szmidt, J. "Characterization of deep electron traps in 4H-SiC Junction Barrier Schottky rectifiers," Solid-State Electronics, Vol.94, pp.56-60, 2014. DOI: 10.1016/j.sse.2014.02.008
  23. Kawahara, K., Alfieri, G., & Kimoto, T. "Detection and depth analyses of deep levels generated by ion implantation in n-and p-type 4 H-SiC," Journal of Applied Physics, Vol.106, No.1, pp.013719. 2009. DOI: 10.1063/1.3159901
  24. Dalibor, T., Pensl, G., Matsunami, H., Kimoto, T., Choyke, W. J., Schoner, A., & Nordell, N. "Deep defect centers in silicon carbide monitored with deep level transient spectroscopy," physica status solidi (a), Vol.162, No.1, pp.199-225. 1997. DOI: 10.7471/ikeee.2022.26.1.50
  25. Kvamsdal, K. E. "Carbon vacancy engineering in p+ n 4H-SiC diodes by thermal processing," Master's thesis, 2019.
  26. Reshanov, S. A., Pensl, G., Danno, K., Kimoto, T., Hishiki, S., Ohshima, T., ... & Choyke, W. J. "Effect of the Schottky barrier height on the detection of midgap levels in 4 H-SiC by deep level transient spectroscopy," Journal of Applied Physics, Vol.102, No.11, pp.113702, 2007. DOI: 10.1063/1.2818050