DOI QR코드

DOI QR Code

Standardized Extract (HemoHIM) Ameliorated High Intensity Exercise Induced Fatigue in Mice

  • Lee, Hyun Jun (Uimyung Research Institute for Neuroscience, Department of Pharmacy, Sahmyook University) ;
  • Kim, Sang Back (Skin & Natural products Lab, Kolmar Korea Co. Ltd) ;
  • Boo, Kyung Jun (School of Medicine and Center for Neuroscience Research, Konkuk University) ;
  • Ortiz, Darlene Mae (Uimyung Research Institute for Neuroscience, Department of Pharmacy, Sahmyook University) ;
  • Sayson, Leandro Val (Uimyung Research Institute for Neuroscience, Department of Pharmacy, Sahmyook University) ;
  • Custodio, Raly James Perez (School of Pharmacy, Jeonbuk National University) ;
  • Cheong, Jae Hoon (School of Pharmacy, Jeonbuk National University) ;
  • Kim, Seul Ki (Food Science R&D Center, Kolmar BNH Co. Ltd) ;
  • Kim, Mikyung (Uimyung Research Institute for Neuroscience, Department of Pharmacy, Sahmyook University) ;
  • Kim, Hee Jin (Uimyung Research Institute for Neuroscience, Department of Pharmacy, Sahmyook University)
  • Received : 2022.04.27
  • Accepted : 2022.06.21
  • Published : 2022.06.30

Abstract

HemoHIM was used as a Korean traditional medicine for anti-inflammatory and antioxidant effects. However, there is no study on the effect of HemoHIM on fatigue. We examined the potential use of HemoHIM to determine whether it can induce anti-fatigue effects. Mice were administered with HemoHIM and VEH for 14 days. On the last day of treatment, mice were subjected to behavioral tests. Subsequently, their plasma and muscle were collected after the treadmill test to measure lactate, lactate dehydrogenase (LDH), ammonia, corticosterone, glycogen, and creatine kinase (CK). We found that HemoHIM moderately increased the running time (s) in the treadmill and mobility duration in the cold swimming tests. In addition, the VEH group showed a significant increase in lactate, LDH, and corticosterone levels in the plasma compared to the group that did not perform the test. However, this was moderately reduced in HemoHIM treatment. Moreover, the HemoHIM-treated group showed significant differences in LDH and glycogen levels, and showed significantly different CK levels in the muscle. HemoHIM is considered to be effective in improving fatigue, given the duration of cold swimming or running time on a treadmill. Also, HemoHIM treatment resulted in reduced concentrations of blood and muscle parameter analysis.

Keywords

Acknowledgement

This research was supported by a grant from the Kolmar BNH, Korea.

References

  1. Chaudhuri, A.; Behan, P. O. Lancet 2004, 363, 978-988. https://doi.org/10.1016/S0140-6736(04)15794-2
  2. Sharma, O. P. Eur. Respir. J. 1999, 13, 713-714. https://doi.org/10.1034/j.1399-3003.1999.13d01.x
  3. Matura, L. A.; Malone, S.; Jaime-Lara, R.; Riegel, B. Biol. Res. Nurs. 2018, 20, 410-421. https://doi.org/10.1177/1099800418764326
  4. Sot zny, F.; Blanco, J.; Capelli, E.; Cast ro-Marrero, J.; St einer, S.; Murovska, M.; Scheibenbogen, C.; European Network on ME/CFS (EUROMENE). Autoimmun. Rev. 2018, 17, 601-609. https://doi.org/10.1016/j.autrev.2018.01.009
  5. Hofman, M.; Ryan, J. L.; Figueroa-Moseley, C. D.; Jean-Pierre, P.; Morrow, G. R. Oncologist 2007, 12, 4-10. https://doi.org/10.1634/theoncologist.12-S1-4
  6. Wolff, B. S.; Raheem, S. A.; Saligan, L. N. Sci. Rep. 2018, 8, 14238. https://doi.org/10.1038/s41598-018-32654-1
  7. Eckhardt, A. L.; Devon, H. A.; Piano, M. R.; Ryan, C. J.; Zerwic, J. J. Nurs. Res. 2014, 63, 83-93. https://doi.org/10.1097/NNR.0000000000000019
  8. Narkhede, A. N.; Jagtap, S. D.; Nirmal, P. S.; Giramkar, S. A.; Nagarkar, B. E.; Kulkarni, O. P.; Harsulkar, A. M. BMC Complement. Altern. Med. 2016, 16, 23. https://doi.org/10.1186/s12906-016-0995-2
  9. Wright, J.; O'Connor, K. M. Med. Clin. North Am. 2014, 98, 597-608. https://doi.org/10.1016/j.mcna.2014.01.010
  10. Lee, Y. C.; Chien, K. L.; Chen, H. H. J. Formos. Med. Assoc. 2007, 106, 565-572. https://doi.org/10.1016/S0929-6646(07)60007-2
  11. Zhao, K. J.; Dong, T. T.; Tu, P. F.; Song, Z. H.; Lo, C. K.; Tsim, K. W. J. Agric. Food Chem. 2003, 51, 2576-2583. https://doi.org/10.1021/jf026178h
  12. Jeong, S. I.; Kwak, D. H.; Lee, S.; Choo, Y. K.; Woo, W. H.; Keum, K. S.; Choi, B. K.; Jung, K. Y. Phytomedicine 2005, 12, 648-655. https://doi.org/10.1016/j.phymed.2004.01.014
  13. Hong, J.-A.; Chung, S.-H.; Lee, J.-S.; Kim, S.-S.; Shin, H.-D.; Kim, H.; Jang, M.-H.; Lee, T.-H.; Lim, B.-V.; Kim, Y.-P.; Kim, C.-J. Biol. Pharm. Bull. 2003, 26, 166-169. https://doi.org/10.1248/bpb.26.166
  14. Park, H. R.; Jo, S. K.; Choi, N. H.; Jung, U. Radiat. Res. 2012, 177, 676-684. https://doi.org/10.1667/RR2768.1
  15. Kim, J. J.; Cho, H. W.; Park, H. R.; Jung, U.; Jo, S. K.; Yee, S. T. PLoS One 2013, 8, e68552. https://doi.org/10.1371/journal.pone.0068552
  16. Jo, S. K.; Lee, H. J.; Kim, S. R.; Kim, J. C.; Bae, C. S.; Jung, U.; Park, H. R.; Jang, J. S.; Kim, S. H. Phytother. Res. 2007, 21, 625-628. https://doi.org/10.1002/ptr.2068
  17. Kim, J.-J.; Jo, S.-K.; Jung, U.; Park, H.-R.; Yee, S.-T. J. Life Sci. 2009, 19, 1808-1814. https://doi.org/10.5352/JLS.2009.19.12.1808
  18. Park, H. R.; Jo, S. K.; Jung, U.; Yee, S. T. Phytother. Res. 2008, 22, 36-42. https://doi.org/10.1002/ptr.2255
  19. Park, H. R.; Ju, E. J.; Jo, S. K.; Jung, U.; Kim, S. H.; Yee, S. T. BMC Cancer 2009, 9, 85. https://doi.org/10.1186/1471-2407-9-85
  20. Kim, J. J.; Choi, J.; Lee, M. K.; Kang, K. Y.; Paik, M. J.; Jo, S. K.; Jung, U.; Park, H. R.; Yee, S. T. Evid. Based Complement. Alternat. Med. 2014, 2014, 461685.
  21. Kim, S. H.; Lee, H. J.; Kim, J. S.; Moon, C.; Kim, J. C.; Park, H. R.; Jung, U.; Jang, J. S.; Jo, S. K. J. Med. Food 2009, 12, 1353-1358. https://doi.org/10.1089/jmf.2008.1322
  22. Hong, M.; Lee, Y. H.; Kim, S.; Suk, K. T.; Bang, C. S.; Yoon, J. H.; Baik, G. H.; Kim, D. J.; Kim, M. J. J. Ginseng Res. 2016, 40, 203-210. https://doi.org/10.1016/j.jgr.2015.07.006
  23. Lin, Y.; Liu, H. L.; Fang, J.; Yu, C. H.; Xiong, Y. K.; Yuan, K. Food Chem. Toxicol. 2014, 68, 290-296. https://doi.org/10.1016/j.fct.2014.03.026
  24. Lee, C. H.; Giuliani, F. Front. Immunol. 2019, 10, 1696. https://doi.org/10.3389/fimmu.2019.01696
  25. Kwon, D. A.; Kim, Y. S.; Baek, S. H.; Kim, S. K.; Kim, H. K.; Jo, S. K.; Jung, U.; Park, H. R.; Lee, H. S. Pharm. Biol. 2019, 57, 543-549. https://doi.org/10.1080/13880209.2019.1651875
  26. Skinner, J. S.; McLellan, T. M. Res. Q. Exerc. Sport 1980, 51, 234-248. https://doi.org/10.1080/02701367.1980.10609285
  27. Ishii, H.; Nishida, Y. J. Phys. Ther. Sci. 2013, 25, 1637-1642. https://doi.org/10.1589/jpts.25.1637
  28. Saey, D.; Michaud, A.; Couillard, A.; Cote, C. H.; Mador, M. J.; LeBlanc, P.; Jobin, J.; Maltais, F. Am. J. Respir. Crit. Care Med. 2005, 171, 1109-1115. https://doi.org/10.1164/rccm.200408-1005OC
  29. Mutch, B. J. C.; Banister, E. W. A. Med. Sci. Sports Exerc. 1983, 15, 41-50.
  30. Barnes, R. H.; Labadan, B. A.; Siyamoglu, B.; Bradfield, R. B. Am. J. Physiol. 1964, 207, 1242-1246. https://doi.org/10.1152/ajplegacy.1964.207.6.1242
  31. Stranahan, A. M.; Lee, K.; Mattson, M. P. Neuromolecular Med. 2008, 10, 118-127. https://doi.org/10.1007/s12017-008-8027-0
  32. Ortenblad, N.; Westerblad, H.; Nielsen, J. J. Physiol. 2013, 591, 4405-4413. https://doi.org/10.1113/jphysiol.2013.251629
  33. Dahlstedt, A. J.; Katz, A.; Wieringa, B.; Westerblad, H. FASEB J. 2000, 14, 982-990. https://doi.org/10.1096/fasebj.14.7.982