DOI QR코드

DOI QR Code

A Comparison of Phenolic Components in Cinnamon Medicines

  • Kim, Chae Won (Department of Oriental Medical Food & nutrition, Semyung University) ;
  • Ko, Jun Hwi (Institute of Natural Medicine, University of Toyama) ;
  • Kim, Do Hyeong (Department of Oriental Medical Food & nutrition, Semyung University) ;
  • Jin, Dezhong (International Education College, Jiangxi University of Traditional Chinese Medicine) ;
  • Ko, Sung Kwon (Department of Oriental Medical Food & nutrition, Semyung University)
  • Received : 2022.01.13
  • Accepted : 2022.06.21
  • Published : 2022.06.30

Abstract

As a result of comparing the phenolic components of cinnamon medicines, the total phenolic component content of Cinnamomi Cortex in China was about 2.65 times higher than that of Cinnamomi Cortex in Vietnam. In addition, the total phenolic component content of Vietnamese Cinnamomi Cortex Spissus was about 1.80 times higher than that of Chinese Cinnamomi Cortex Spissus. Meanwhile, Vietnamese Cinnamomi Ramulus showed a content about 3.29 times higher than that of Chinese Cinnamomi Ramulus. Cinnamaldehyde, the main component of cinnamon medicines, showed the same tendency as the total phenolic component content. In terms of the average content of the total phenolic components, Cinnamomi Cortex showed the highest content at 23964 ㎍/g, followed by Cinnamomi Cortex Spissus at 17489 ㎍/g and Cinnamomi Ramulus at 5435.8 ㎍/g. These results showed that Cinnamomi Cortex and Cinnamomi Cortex Spissus with stem bark as usage sites had about 3.22 to 4.41 times higher content of phenolic components than Cinnamomi Ramulus with young branches as usage sites.

Keywords

Acknowledgement

This work was supported by Korea Institute of Planning and Evaluation for Technology in Food, Agriculture and Forestry (IPET) through Innovative Food Product and Natural Food Materials Development Program, funded by Ministry of Agriculture, Food and Rural Affairs (MAFRA) (119023-3)

References

  1. Ko, S. K. Herbal food botany; Jinyoungsa: Korea, 2016, p 34.
  2. Korean Pharmacognosy Professors Association. Herbology; Korean Pharmaceutical Association: Korea, 2002, p 67.
  3. Sharma, U. K.; Sharma, A. K.; Pandey, A. K. BMC Complement. Altern. Med. 2016, 16, 156.
  4. Kwon, H.; Lee, J. J.; Lee, J. H.; Cho, W. K.; Gu, M. J.; Lee, K. J.; Ma, J. Y. Am. J. Chin. Med. 2015, 43, 621-636. https://doi.org/10.1142/S0192415X1550038X
  5. Alotaibi, M. Reprod. Biol. 2016, 16, 27-33. https://doi.org/10.1016/j.repbio.2015.12.001
  6. Qin, B.; Panickar, K. S.; Anderson, R. A. J. Diabetes Sci. Technol. 2010, 4, 685-693. https://doi.org/10.1177/193229681000400324
  7. Jung, Y.; Yang, H.; Lee, I. Y.; Yong, T. S.; Lee, S. Polymers 2020, 12, 243. https://doi.org/10.3390/polym12010243
  8. Qin, B.; Panickar, K. S.; Anderson, R. A. Nutrition 2014, 30, 210-217. https://doi.org/10.1016/j.nut.2013.07.001
  9. Jin, S.; Cho, K. H. Food Chem. Toxicol. 2011, 49, 1521-1529. https://doi.org/10.1016/j.fct.2011.03.043
  10. Hong, J. W.; Yang, G. E.; Kim, Y. B.; Eom, S. H.; Lew, J. H.; Kang, H. BMC Complement. Altern. Med. 2012, 12, 237. https://doi.org/10.1186/1472-6882-12-237
  11. Liu, Y.; An, T.; Wan, D.; Yu, B.; Fan, Y.; Pei, X. Front. Pharmacol. 2020, 11, 582719. https://doi.org/10.3389/fphar.2020.582719
  12. Lee, J. S.; Lee, S. D.; Hwang, K. H.; Kim, H. S.; Yoo, I. S.; Han, K. Y.; Chae, Y. Z. Yakhak Hoeji 2013, 57, 235-240.
  13. Bin, J. I.; Zhao, Y. L.; Zhang, Q. L.; Wang, P.; Guan, J.; Rong, R.; Yu, Z. G. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2015, 1001, 107-113. https://doi.org/10.1016/j.jchromb.2015.07.049
  14. Zhao, L. S.; An, Q.; Qin, F.; Xiong, Z. L. Nat. Prod. Res. 2014, 28, 500-502. https://doi.org/10.1080/14786419.2013.877904