DOI QR코드

DOI QR Code

Kinesin-13, a Motor Protein, is Regulated by Polo-like Kinase in Giardia lamblia

  • Park, Eun-Ah (Department of Environmental Medical Biology and Institute of Tropical Medicine, Yonsei University College of Medicine) ;
  • Kim, Juri (Department of Environmental Medical Biology and Institute of Tropical Medicine, Yonsei University College of Medicine) ;
  • Shin, Mee Young (Department of Environmental Medical Biology and Institute of Tropical Medicine, Yonsei University College of Medicine) ;
  • Park, Soon-Jung (Department of Environmental Medical Biology and Institute of Tropical Medicine, Yonsei University College of Medicine)
  • 투고 : 2022.05.20
  • 심사 : 2022.06.03
  • 발행 : 2022.06.30

초록

Kinesin-13 (Kin-13), a depolymerizer of microtubule (MT), has been known to affect the length of Giardia. Giardia Kin-13 (GlKin-13) was localized to axoneme, flagellar tips, and centrosomes, where phosphorylated forms of Giardia polo-like kinase (GlPLK) were distributed. We observed the interaction between GlKin-13 and GlPLK via co-immunoprecipitation using transgenic Giardia cells expressing Myc-tagged GlKin-13, hemagglutinin-tagged GlPLK, and in vitro-synthesized GlKin-13 and GlPLK proteins. In vitro-synthesized GlPLK was demonstrated to auto-phosphorylate and phosphorylate GlKin-13 upon incubation with [γ-32P]ATP. Morpholino-mediated depletion of both GlKin-13 and GlPLK caused an extension of flagella and a decreased volume of median bodies in Giardia trophozoites. Our results suggest that GlPLK plays a pertinent role in formation of flagella and median bodies by modulating MT depolymerizing activity of GlKin-13.

키워드

과제정보

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Korea government (MSIT) (NRF-2018R1D1A1A02085338 to S-J. Park and NRF-2020R1C1C1010581 to J. Kim).

참고문헌

  1. Nash TE. Unraveling how Giardia infections cause disease. J Clin Invest 2013; 123: 2346-2347. http://doi.org/10.1172/JCI69956
  2. Elmendorf HG, Dawson SC, McCaffery JM. The cytoskeleton of Giardia lamblia. Int J Parasitol 2003; 33: 3-28. http://doi.org/10.1016/S0020-7519(02)00228-X
  3. Desai A, Mitchison TJ. Microtubule polymerization dynamics. Ann Rev Cell Develop Biol 1997; 13: 83-117. http://doi.org/10.1146/annurev.cellbio.13.1.83
  4. Akhmanova A, Steinmetz MO. Tracking the ends: a dynamic protein network controls the fate of microtubule tips. Nat Rev Mol Cell Biol 2008; 9: 309-322. http://doi.org/10.1038/nrm2369
  5. Dawson SC, Sagolla MS, Mancuso JJ, Woessner DJ, House SA, FritzLaylin L, Cande WZ. Kinesin-13 regulates flagellar, interphase, and mitotic microtubule dynamics in Giardia intestinalis. Eukaryot Cell 2007; 6: 2354-2364. http://doi.org/10.1128/EC.00128-07
  6. Kim J, Sim S, Kim J, Song K, Yong TS, Park SJ. Giardia lamblia EB1 is a functional homolog of yeast Bim1p that binds to microtubules. Parasitol Int 2008; 57: 465-471. http://doi.org/10.1016/j.parint.2008.05.008
  7. Kim J, Nagami S, Lee KH, Park SJ. Characterization of microtubule-binding and dimerization activity of Giardia lamblia end-binding 1 protein. PLoS One 2014; 9: e97850. http://doi.org/10.1371/journal.pone.0097850
  8. Kim J, Park SJ. Roles of end-binding 1 protein and gamma-tubulin small complex in cytokinesis and flagella formation of Giardia lamblia. Microbiologyopen 2019; 8: e00748. http://doi.org/10.1002/mbo3.748
  9. Kim J, Lee HY, Lee KH, Park SJ. Phosphorylation of serine 148 in Giardia lamblia end-binding 1 protein is important for cell division. J Eukaryot Microbiol 2017; 64: 464-480. http://doi.org/10.1111/jeu.12384
  10. Wimbish RT, DeLuca JG. Hec1/Ndc80 tail domain function at the kinetochore-microtubule interface. Front Cell Dev Biol 2020; 8: 43. http://doi.org/10.3389/fcell.2020.00043
  11. Maia AR, Garcia Z, Kabeche L, Barisic M, Maffini S, Macedo-Ribeiro S, Cheeseman IM, Compton DA, Kaverina I, Maiato H. Cdk1 and Plk1 mediate a CLASP2 phospho-switch that stabilizes kinetochore-microtubule attachments. J Cell Biol 2012; 199: 285-301. http://doi.org/10.1083/jcb.201203091
  12. Zhang X, Lan W, Ems-McClung SC, Stukenberg PT, Walczak CE. Aurora B phosphorylates multiple sites on mitotic centromere-associated kinesin to spatially and temporally regulate its function. Mol Biol Cell 2007; 18: 3264-3276. http://doi.org/10.1091/mbc.E07-01-0086
  13. Zhang X, Ems-McClung SC, Walczak CE. Aurora A phosphorylates MCAK to control Ran-dependent spindle bipolarity. Mol Biol Cell 2008; 19: 2752-2765. http://doi.org/10.1091/mbc.E08-02-0198
  14. Davids BJ, Williams S, Lauwaet T, Palanca T, Gillin FD. Giardia lamblia aurora kinase: a regulator of mitosis in a binucleate parasite. Int J Parasitol 2008; 38: 353-369. http://doi.org/10.1016/j.ijpara.2007.08.012
  15. Gourguechon S, Holt LJ, Cande WZ. The Giardia cell cycle progresses independently of the anaphase-promoting complex. J Cell Sci 2013; 126: 2246-2255. http://doi.org/10.1242/jcs.121632
  16. Cho CC, Su LH, Huang YC, Pan YJ, Sun CH. Regulation of a Myb transcription factor by cyclin-dependent kinase 2 in Giardia lamblia. J Biol Chem 2012; 287: 3733-3750. http://doi.org/10.1074/jbc.M111.298893
  17. Park EA, Kim J, Shin MY, Park SJ. A polo-like kinase modulates cytokinesis and flagella biogenesis in Giardia lamblia. Parasite Vectors 2021; 14: 182. http://doi.org/10.1186/s13071-021-04687-5
  18. Moores CA, Milligan RA. Visualisation of a kinesin-13 motor on microtubule end mimics. J Mol Biol 2008; 377: 647-654. http://doi.org/10.1016/j.jmb.2008.01.079
  19. McInally SG, Hagen KD, Nosala C, Williams J, Nguyen K, Booker J, Jones K, Dawson SC. Robust and stable transcriptional repression in Giardia using CRISPRi. Mol Biol Cell 2019; 30: 119-130. http://doi.org/10.1091/mbc.E18-09-0605
  20. Keister DB. Axenic culture of Giardia lamblia in TYI-S-33 medium supplemented with bile. Trans R Soc Trop Med Hyg 1983; 77: 487-488. http://doi.org/10.1016/0035-9203(83)90120-7
  21. Kim J, Lee HY, Lee MA, Yong TS, Lee KH, Park SJ. Identification of α-11 giardin as a flagellar and surface component of Giardia lamblia. Exp Parasitol 2013; 135: 227-233. http://doi.org/10.1016/j.exppara.2013.07.010
  22. Kim J, Shin MY, Park SJ. RNA-sequencing profiles of cell cycle-related genes upregulated during the G2-phase in Giardia lamblia. Korean J Parasitol 2019; 57: 185-189. http://doi.org/10.3347/kjp.2019.57.2.185
  23. Gourguechon S, Cande WZ. Rapid tagging and integration of genes in Giardia intestinalis. Eukary Cell 2011; 10; 142-145. http://doi.org/10.1128/EC.00190-10
  24. Carpenter ML, Cande WZ. Using morpholinos for gene knockdown in Giardia intestinalis. Eukaryot Cell 2009; 8: 916-919. http://doi.org/10.1128/EC.00041-09
  25. Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S, Schmid B, Tinevez J, White DJ, Hartenstein V, Eliceiri K, Tomancak P, Cardona A. Fiji: an open source platform for biological image analysis. Nat Methods 2012; 9: 676-682. http://doi.org/10.1038/nmeth.2019
  26. Tanenbaum ME, Medema RH, Akhmanova A. Regulation of localization and activity of the microtubule depolymerase MCAK. Bioarchitecture 2011; 1: 80-87. http://doi.org/10.4161/bioa.1.2.15807
  27. Manning AL, Ganem NJ, Bakhoum SF, Wagenbach M, Wordeman L, Compton DA. The Kinesin-13 proteins Kif2a, Kif2b, and Kif2c/MCAK have distinct roles during mitosis in human cells. Mol Biol Cell 2007; 18: 2970-2979. http://doi.org/10.1091/mbc.E07-02-0110
  28. Chan KY, Matthews KR, Ersfeld K. Functional characterisation and drug target validation of a mitotic kinesin-13 in Trypanosoma brucei. PLoS Pathog 2010; 6: e1001050. http://doi.org/10.1371/journal.ppat.1001050
  29. Wickstead B, Carrington JT, Gluenz E, Gull K. The expanded kinesin-13 repertoire of Trypanosomes contains only one mitotic kinesin indicating multiple extra-nuclear roles. PLoS One 2010; 5: e15020. http://doi.org/10.1371/journal.pone.0015020
  30. Blaineau C, Tessier M, Dubessay P, Tasse L, Crobu L, Pages M, Bastien P. A novel microtubule-depolymerizing kinesin involved in length control of a eukaryotic flagellum. Curr Biol 2007; 17: 778-782. http://doi.org/10.1016/j.cub.2007.03.048
  31. Piao T, Luo M, Wang L, Guo Y, Li D, Li P, Snell WJ, Pan J. A microtubule depolymerizing kinesin functions during both flagellar disassembly and flagellar assembly in Chlamydomonas. Proc Natl Acad Sci USA 2009; 106: 4713-4718. http://doi.org/10.1073/pnas.0808671106
  32. Vasudevan KK, Jiang Y, Lechtreck KF, Kushida Y, Alford LM, Sale WS, Hennessey T, Gaertig J. Kinesin-13 regulates the quantity and quality of tubulin inside cilia. Mol Biol Cell 2015; 26: 478-494. http://doi.org/10.1091/mbc.E14-09-1354
  33. Lee T, Langford KJ, Askham JM, Bruning-Richardson A, Morrison EE. MCAK associates with EB1. Oncogene 2008; 183: 1223-1333. https://doi.org/10.1038/sj.onc.1210867
  34. Sanhaji M, Friel CT, Kreis N, Kramer A, Martin C, Howard J, Strebhardt K, Yuan J. Functional and spatial regulation of mitotic centromere-associated kinesin by cyclin-dependent kinase 1. Mol Cell Biol 2010; 30: 2594-2607. http://doi.org/10.1128/MCB.00098-10
  35. Dragestein KA, van Cappellen WA, van Haren J, Tsibidis GD, Akhmanova A, Knoch TA, Grosveld F, Galjart N. Dynamic behavior of GFP-CLIP-170 reveals fast protein turnover on microtubule plus ends. J Cell Biol 2008; 180: 729-737. http://doi.org/10.1083/jcb.200707203
  36. Sanhaji M, Ritter A, Belsham HR, Friel CT, Roth S, Louwen F, Yuan J. Polo-like kinase 1 regulates the stability of the mitotic centromere-associated kinesin in mitosis. Oncotarget 2014; 5: 3130-3144. http://doi.org/10.18632/oncotarget.1861
  37. Ritter A, Sanhaji M, Steinhauser K, Roth S, Louwen F, Yuan J. The activity regulation of the mitotic centromere-associated kinesin by Polo-like kinase 1. Oncotarget 2015; 6: 6641-6655. http://doi.org/10.18632/oncotarget.2843
  38. Shao H, Huang Y, Zhang L, Yuan K, Chu Y, Dou Z, Jin C, Garcia-Barrio M, Liu X, Yao X. Spatiotemporal dynamics of Aurora BPLK1-MCAK signaling axis orchestrates kinetochore bi-orientation and faithful chromosome segregation. Sci Rep 2015; 5: 12204. http://doi.org/10.1038/srep12204
  39. Nohynkova E, Tumova P, Kulda J. Cell division of Giardia intestinalis: Flagellar developmental cycle involves transformation and exchange of flagella between mastigonts of a diplomonad cell. Eukaryotic Cell 2006; 5: 753-761. http://doi.org/10.1128/EC.5.4.753-761.2006