DOI QR코드

DOI QR Code

System-Level Seismic Fragility Evaluation of Bridge Considering Aging Effects

노후도를 고려한 교량의 시스템-수준 지진취약도 평가

  • Kong, Sina (Department of Civil Engineering, Kangwon National University) ;
  • Moon, Jiho (Department of Civil Engineering, Kangwon National University) ;
  • Song, Jong-Keol (Department of Civil Engineering, Kangwon National University)
  • 꽁씨나 (강원대학교 건축.토목.환경공학부) ;
  • 문지호 (강원대학교 건축.토목.환경공학부) ;
  • 송종걸 (강원대학교 건축.토목.환경공학부)
  • Received : 2022.02.09
  • Accepted : 2022.04.07
  • Published : 2022.06.30

Abstract

As a bridge ages, its mechanical properties and structural performance deteriorate, degrading its seismic performance during a strong earthquake. In this study, the aging of piers and bridge bearings was quantified in several stages and reflected in the analysis model, enabling the evaluation of the member-level seismic fragility of these bearings. Moreover, by assuming that the failure mechanism of a bridge system is a series system, a method for evaluating the system-level seismic fragility based on the member-level seismic fragility analysis result is formulated and proposed. For piers with rubber and lead-rubber bearings (members vulnerable to aging effects), five quantitative degrees of aging (0, 5, 10, 25, and 40%) are assumed to evaluate the member-level seismic fragility. Then, based on the result, the system-level seismic fragility evaluation was implemented. The pier rather than the bridge bearing is observed to have a dominant effect on the system-level seismic fragility. This means that the seismic fragility of more vulnerable structural members has a dominant influence on the seismic fragility of the entire bridge system.

교량은 사용년한이 증가함에 따라 노후화로 인해 역학적인 성질과 구조적인 성능이 저하되고, 이로 인해서 강진 시에 내진성능이 저하된다. 교각과 교량받침에 대한 노후화를 몇 가지 단계로 정량화하여 해석모델에 반영하였고, 노후화된 교각과 교량받침에 대하여 부재-수준의 지진취약도를 평가하였다. 교량 시스템의 파괴 메카니즘을 직렬시스템으로 가정하여, 부재-수준의 지진취약도 해석 결과로부터 시스템-수준의 지진취약도를 평가하는 방법을 제안하였다. 노후도에 취약한 부재인 교각과 교량받침에 대하여 5가지 정량적인 노후도(0, 5, 10, 25, 40%)를 가정하여 부재-수준의 지진취약도를 평가하였고, 이 결과로부터 시스템-수준의 지진취약도 평가를 수행하였다. 시스템-수준의 지진취약도는 교량받침 보다는 교각이 지배적인 영향을 줌을 알 수 있었다. 이는 보다 취약한 구조부재의 지진취약도가 전체 교량시스템의 지진취약도에 지배적인 영향을 주는 것을 의미한다.

Keywords

Acknowledgement

이 논문은 2021년도 정부(교육부)의 재원으로 한국연구재단의 지원을 받아 수행된 기초연구사업(No. 2021R1I1A3047237)으로 이에 감사드립니다.

References

  1. American Association of State Highway and Transportation Officials (AASHTO) (1999) Guide Specifications for Seismic Isolation Design, Washington, D.C., p.47.
  2. Cho, S.H., Chung, L., Roh, Y.S. (2005) Estimation of Rebar Corrosion Rate in Reinforced Concrete Structure, Corros. Rev., 23(4-6), pp.329~353. https://doi.org/10.1515/corrrev.2005.23.4-5-6.329
  3. Constantinou, M.C., Tsopelas, P., Kasakanati, A., Wolff, E.D. (1999) Property Modification Factors for Seismic Isolation Bearings, Technical Report MCEER-99-0012, Multidisciplinary Center for Earthquake Engineering Research, University at Buffalo, State University of New York, Buffalo. NY.
  4. Cornell, C.A., Jalayer, F., Hamburger, R.O., Foutch, D.A. (2002) Probabilistic Basis for 2000 SAC Federal Emergency Management Agency Steel Moment Frame Guidelines, J. Struct. Eng., 128(4), pp.526~533. https://doi.org/10.1061/(asce)0733-9445(2002)128:4(526)
  5. Council, B.S.S (1997) NEHRP Guidelines and Commentary for the Seismic Rehabilitation of Buildings: FEMA 273-274. BSSC: Washington, D.C.
  6. Jeong, Y.H., Song, J.K., Shin, S.B. (2019) Evaluation of Seismic Response Considering the Ageing Effect of Rubber and Lead-Rubber Bearings Applied to PSC Box Bridge, EESK J. Earthq. Eng., 23, pp.311~319.
  7. Mazzoni, S., McKenna. F., Scott, M.H., Fenves. G.L. (2007) OpenSees: Open System of Earthquake Engineering Simulation, Pacific Earthquake Engineering Research Center, University of California, Berkeley, CA.
  8. Moschonas, I.F., Kappos, A.J., Panetsos, P. Papadopoulos, V., Makarios, T., Thanopoulos, P. (2009) Seismic Fragility Curves for Greek Bridges: Methodology and Case Studies, Bull Earthq. Eng, 7, pp.439~468. https://doi.org/10.1007/s10518-008-9077-2
  9. Nielson, B.G., DesRoches, R. (2006) Seismic Fragility Methodology for Highway Bridges using a Component Level Approach, Earthq. Eng. & Struct. Dyn., 36(6), pp.823~839. https://doi.org/10.1002/eqe.655
  10. Nowak, A.S., Collins, K.R. (2012) Reliability of Structures, CRC Press, p.407.
  11. Shin S.B., Hong J.Y., Moon J.H., Song, J.K. (2020) Seismic Response Evaluation of Composite Steel-Concrete Box Girder Bridge according to Aging Effect of Piers, J. Comput. Struct. Eng. Inst. Korea, 33(5), pp.319~329. https://doi.org/10.7734/COSEIK.2020.33.5.319
  12. Shin, S.B., Kong, S., Moon, J.H., Song, J.K. (2021). Seismic Fragility Evaluation of Bridges Considering Rebar Corrosion, J. Comput. Struct. Eng. Inst. Korea, 34(4), pp.231~241. https://doi.org/10.7734/COSEIK.2021.34.4.231
  13. Shinozuka, M., Feng, M.Q, Lee, J., Naganuma, T. (2000) Statistical Analysis of Fragility Curves, J. Eng. Mech., 126(12), pp.1224~1231. https://doi.org/10.1061/(ASCE)0733-9399(2000)126:12(1224)
  14. Sun, C.H., Kim, I.H. (2021) Shear Characteristic Changes in Blended Rubber of Elastomeric Bearings due to Aging, J. Korean Soc. Hazard Mitig., 21(6), pp.247~255. https://doi.org/10.9798/KOSHAM.2021.21.6.247