DOI QR코드

DOI QR Code

Structural Behavior of Reinforced Concrete Members Subjected to Axial and Blast Loads Using Nonlinear Dynamic Analysis

비선형 동적해석을 이용한 축하중과 폭발하중을 동시에 받는 철근콘크리트 부재의 구조 거동 분석

  • Received : 2022.02.08
  • Accepted : 2022.04.29
  • Published : 2022.06.30

Abstract

In this study, the structural behavior of reinforced concrete members under simultaneous axial and blast loads was analyzed. Nonlinear dynamic analysis verification was performed using the experimental data of panels under fundamental blast load as well as those of reinforced concrete columns subjected to axial and blast loads. Because Autodyn is a program designed only for dynamic analysis, an analysis process is devised to simulate the initial stress state of members under static loads, such as axial loads. A total of 80 nonlinear dynamic finite element analysis procedures were conducted by selecting parameters corresponding to axial load ratios and scaled distances ranging 0%~70% and 1.1~2.0 (depending on the equivalent of TNT), respectively. The structural behavior was compared and analyzed with the corresponding degree of damage and maximum lateral displacement through the changes in axial load ratio and scaled distance. The results show that the maximum lateral displacement decreases due to the increase in column stiffness under axial loads. In view of the foregoing, the formulated analysis process is anticipated to be used in developing blast-resistant design models where structural behavior can be classified into three areas considering axial load ratios of 10%~30%, 30%~50%, and more than 50%.

본 논문에서는 축하중과 폭발하중을 동시에 받는 철근콘크리트 부재의 구조 거동을 분석하였다. 기본적인 폭발하중을 받는 패널 실험 데이터, 축하중과 폭발하중을 받는 철근콘크리트 기둥 실험데이터를 이용하여 비선형 동적해석 모델링을 검증하였다. 축하중의 적용에 있어서 Autodyn은 동적해석만을 위한 프로그램이기 때문에 축하중과 같은 정적 하중에 대한 초기 응력 상태를 모사하는 해석 절차를 제시하였다. 축하중비 0%~70% 구간과 TNT 등가량에 의존한 환산거리 1.1~2.0에 해당하는 매개변수를 선정하여 총 80개의 비선형 동적 유한요소해석을 진행하였다. 축하중비와 환산거리의 변화를 통해 손상정도와 최대 변위 및 회전각으로 구조 거동을 비교 분석한 결과로 원거리 폭발하중에서 축하중을 받는 기둥의 강성 증가로 최대 변위가 감소한다. 결과적으로 축하중비 10%~30%, 30%~50%, 50% 이상의 영역 3가지로 구조적 거동 분류가 가능함에 따라 내폭 설계 모델 개발에 활용될 수 있을 것으로 보인다.

Keywords

Acknowledgement

본 연구는 국토교통부/국토교통과학기술진흥원의 지원으로 수행되었음(No. 22RMPP-C163162-02).

References

  1. ACI 318-19 (2019) Building Code Requirements for Structural Concrete, American Concrete Institute, MI, p.623.
  2. ASCE (2010) Design of Blast-Resistant Buildings in Petrochemical Facilities, American Society of Civil Engineer, Virginia, p.300.
  3. ASCE 41-17 (2017) Seismic Evaluation and Retrofit of Existing Buildings, American Society of Civil Engineer, Virginia, p.576.
  4. ASCE 59-11 (2011) Blast Protection of Buildings, American Society of Civil Engineer, Virginia, p.108.
  5. Autodyn (2005) Autodyn Theory Manual Revision 4.3, Century Dynamics, p.235.
  6. Bao, X., Li, B. (2010) Residual Strength of Blast Damaged Reinforced Concrete Columns, Int. J. Impact Eng., 37, pp.295~308. https://doi.org/10.1016/j.ijimpeng.2009.04.003
  7. Braimah, A., Siba, F. (2018) Effective Stiffness of RC Columns, Can. J. Civ. Eng., 45, pp.289~303. https://doi.org/10.1139/cjce-2016-0390
  8. Elwood, K.J., Eberhard, M.O. (2006) Effective Stiffness of RC Columns, PEER Research Digest 2006-1, Pacific Earthquake Engineering Research Center, pp.1~5.
  9. FEMA 356 (2000) Prestandard and Commentary for Seismic Rehabilitation of Buildings, Federal Emergency Management Agency, Washington, DC, p.518.
  10. Kim, H.S., Ahn, H.S., Ahn, J.G. (2014) Erosion Criteria for the Blast Analysis of Reinforcement Concrete Members, J. Archit. Inst. Korea Struct. & Constr., 30(3), pp.21~28. https://doi.org/10.5659/JAIK_SC.2014.30.3.021
  11. Kyei, C., Braimah, A. (2017) Effects of Transverse Reinforcement Spacing on the Response of Reinforced Concrete Columns Subjected to Blast Loading, Eng. Struct., 142, pp.148~164. https://doi.org/10.1016/j.engstruct.2017.03.044
  12. Lee, S.H., Kim, H.S. (2021) Study on the Calculation of the Blast Pressure of Vapor Cloud Explosions by Analyzing Plant Explosion Cases, J. Comput. Struct. Eng. Inst. Korea, 34(1), pp.1~8. https://doi.org/10.7734/COSEIK.2021.34.1.1
  13. Momeni, M., Hadianfard, M. A., Baghlani, A. (2019) Numerical Damage Evaluation Assessment of Blast Loaded Steel Columns with Similar Section Properties, Struct., 20, pp.189~203. https://doi.org/10.1016/j.istruc.2019.04.002
  14. Nickerson, J.M., Trasborg, P.A., Naito, C.J., Newberry, C.M., Davidson, J.S. (2015) Finite Element Evaluation of Blast Design Response Criteria for Load-Bearing Precast Wall Panels, Int. J. Prot. Struct., 6(1), pp.155~174. https://doi.org/10.1260/2041-4196.6.1.155
  15. PEER/ATC-72-1 (2010) Modeling and Acceptance Criteria for Seismic Design and Analysis of Tall Buildings, Pacific Earthquake Engineering Research Center, California, p.242.
  16. Shi, Y., Hao, H., Li, Z. (2008) Numerical Derivation of Pressure-Impulse Diagrams for Prediction of RC Column Damage to Blast Loads, Int. J. Impact Eng., 35, pp. 1213~1227. https://doi.org/10.1016/j.ijimpeng.2007.09.001
  17. Thai, D.K., Pham, T.H., Nguyen, D.L. (2019) Damage Assessment of Reinforced Concrete Columns Retrofitted by Steel Jacket under Blast Loading, Struct. Des. Tall Spec. Build., 29(1), pp.1~15.
  18. UFC3-340-02 (2008) Structures to Resist the Effects of Accidental Explosions, Depart of Defence(DoD), p.1943.
  19. USACE (2005) Component Explosive Damage Assessment Workbook, US Army Corps of Engineers, p.140.
  20. Woodson, S.C., Baylot, J.T. (1999) Structural Collapse: Quarterscale Model Experiments, Technical Report SL-99-8, US Army Corps of Engineers Engineer Research and Development Center, USA, p.174.
  21. Woodson, S.C., Baylot, J.T. (2000) Quarter-scale Building/Column Experiments, Proceeding of Advanced Technology in Structural Engineering, Philadelphia, pp.1~8.
  22. Wu, C., Oehlers, D.J., Rebentrost, M., Leach, J., Whittaker, A.S. (2009) Blast Testing of Ultra-high Performance Fibre and FRP-retrofitted Concrete Slabs, Eng. Struct., 31, pp.2060~2069. https://doi.org/10.1016/j.engstruct.2009.03.020
  23. Zhang, C., Gholipour, G., Mousavi, A.A. (2020) Blast Loads induced Responses of RC Structural Members: State of the Art Review, Compos. Part B, 195, 108066. https://doi.org/10.1016/j.compositesb.2020.108066