DOI QR코드

DOI QR Code

Finite Element Analysis of Slender Reinforced Concrete Columns Subjected to Eccentric Axial Loads and Elevated Temperature

고온과 편심 축하중을 받는 세장한 철근 콘크리트 기둥의 유한요소해석

  • Received : 2022.02.22
  • Accepted : 2022.05.27
  • Published : 2022.06.30

Abstract

In this study, slender reinforced concrete columns subjected to high temperatures and eccentric axial loads are evaluated by finite element analysis employing Abaqus (a finite element analysis program). Subsequently, the analysis results are compared and assessed. The sequentially coupled thermal stress analysis provided by Abaqus was employed to reflect the condition of an axially loaded column exposed to fire. First, heat transfer analysis was performed on the column cross-section. After verifying the results, another analysis was conducted: the cross-section was transformed into a three-dimensional element and then structural analyzed. In the analysis process, the column was modeled by accounting for the effects of tension stiffening and initial imperfection that could affect convergence and accuracy. The analysis results were compared with 74 experimental records, and an average error of 6% was observed based on the fire exposure and resistance. The foregoing indicates that the fire resistance performance of reinforced concrete columns can be predicted through finite element analysis.

본 논문에서는 유한요소해석 프로그램 Abaqus를 이용하여 고온과 편심 축하중을 받는 세장한 철근 콘크리트 기둥의 유한요소해석 절차를 제시하고 해석 결과를 비교·분석하였다. 기둥에 축하중과 화재가 가해지는 상황을 해석에 반영하기 위해 Abaqus에서 제공하는 순차 결합 열-응력 해석을 사용하였다. 우선 콘크리트 단면에 대한 열전달 해석을 수행하여 검증한 뒤, 이를 3차원 요소로 확장하고 구조해석과 결합하여 해석을 수행하였다. 해석 과정에서 수렴성 및 정확성에 영향을 미치는 인장 증강 효과와 초기 불완전성을 고려하여 모델링하였다. 해석 결과는 74개 실험 데이터와 비교하였으며, 내화시간을 기준으로 평균 6%의 오차를 나타냄에 따라 유한요소해석을 통해 철근콘크리트 기둥의 내화성능을 예측할 수 있게 되었다.

Keywords

Acknowledgement

본 연구는 한국연구재단이 주관하는 중견연구자지원사업(NRF-2021R1A2C100668311)의 지원을 받아 수행되었습니다.

References

  1. Abaqus (2016) Abaqus Analysis User's Guide, Dassault Systems Simulia Corp.
  2. Alogla, S., Kodur, V.K.R. (2018) Quantifying Transient Creep Effects on Fire Response of Reinforced Concrete Columns, Eng. Struct., 174, pp.885~895. https://doi.org/10.1016/j.engstruct.2018.07.093
  3. Carreira, D.J., Chu, K.H. (1985) Stress-Strain Relationship for Plain Concrete in Compression, J. Am. Concr. Inst., 82(6), pp.797~804.
  4. CEN (2004) EN. 1992-1-2 Eurocode 2 : Design of Concrete Structures - Part 1-2 : General Rules - Structural Fire Design, Europeon Committee for Standardization, Brussels.
  5. CEN (2005) EN. 1993-1-2 Eurocode 3 : Design of Steel Structures - Part 1-2 : General Rules - Structural Fire Design, Europeon Committee for Standardization, Brussels.
  6. Chinthapalli, H.K., Sharma, S., Agarwal, A. (2022) Fire Behavior and Modeling of Short RC Columns in Pure Axial Compression : Role of Volume, Configuration, and Spacing of Lateral Reinforcement, J. Struct. Eng.(United States), 148(1), 04021245, pp.885~895.
  7. Espinos, A., Romero, M.L., Hospotaler, A. (2010) Advanced Model for Predicting the Fire Response of Concrete Filled Tubular Columns, J. Constr. Steel Res., 66(8-9), pp.1030~1046. https://doi.org/10.1016/j.jcsr.2010.03.002
  8. Gernay, T. (2019) Fire Resistance and Burnout Resistance of Reinforced Concrete Columns, Fire Safety J., 104, pp.67~78. https://doi.org/10.1016/j.firesaf.2019.01.007
  9. Hillerborg, A., Modeer, M., Petersson, P.E. (1976) Analysis of Crack Formation and Crack Growth in Concrete by Means of Fracture Mechanics and Finite Elements, Cem. & Concr. Res., 6(6), pp.773~781. https://doi.org/10.1016/0008-8846(76)90007-7
  10. Huang, Z.F., Tan, K.H. (2003) Rankine Approach for Fire Resistance of Axially-and-Flexurally Restrained Steel Columns, J. Constr. Steel Res., 59(12), pp.1553~1571. https://doi.org/10.1016/S0143-974X(03)00103-2
  11. IBC (2021) International Building Code, International Code Council.
  12. ISO (1975) ISO 834:1975 Fire Resistance Tests-Elements of Building Construction, International Organization for Standardization.
  13. Lie, T.T., Woollerton, J.L. (1988) Fire Resistance of Reinforced Concrete Columns : Test Results, National Research Council Canada, Institute for Research in Construction, p.302
  14. Tan, K.H., Nguyen, T.T. (2013) Experimental Behavior of Restrained Reinforced Concrete Columns Subjected to Equal Biaxial Bending at Elevated Temperatures, Eng. Struct., 56, pp.823~836. https://doi.org/10.1016/j.engstruct.2013.06.013