DOI QR코드

DOI QR Code

Gamma and neutron shielding properties of B4C particle reinforced Inconel 718 composites

  • Gokmen, Ugur (Gazi University, Faculty of Technology, Department of Metallurgical and Materials Engineering)
  • 투고 : 2021.03.16
  • 심사 : 2021.09.19
  • 발행 : 2022.03.25

초록

Neutron and gamma-ray shielding properties of Inconel 718 reinforced B4C (0-25 wt%) were investigated using PSD software. Mean free path (MFP), linear and mass attenuation coefficients (LAC,MAC), tenth-value and half-value layers (TVL,HVL), effective atomic number (Zeff), exposure buildup factors (EBF), and fast neutron removal cross-sections (FNRC) values were calculated for 0.015-15 MeV. It was found that MAC and LAC increased with the decrease in the content of B4C compound by weight in Inconel 718. The EBFs were computed using G-P fitting method for 0.015-15 MeV up to the penetration depth of 40 mfp. HVL, TVL, and FNRC values were found to range between 0.018 cm and 3.6 cm, between 2.46 cm and 12.087 cm, and between 0.159 cm-1 and 0.194 cm-1, respectively. While Inconel 718 provides the maximum photon shielding property since it offered the highest values of MAC and Zeff and the lowest value of HVL, Inconel 718 with B4C(25 wt%) was observed to provide the best shielding material for neutron since it offered the highest FNRC value. The study is original in terms of several aspects; moreover, the results of the study may be used in nuclear technology, as well as other technologies including nano and space technologies.

키워드

과제정보

The author expresses his gratitude to Gazi University Scientific Research Projects Office (Project No: GUBAP 65/2017-03) for the financial support.

참고문헌

  1. D. Mengge, X. Xiangxin, He, L. Dong, W. Chao, L. Zhefu, A novel comprehensive utilization of vanadium slag: as gamma ray shielding material, J. Hazard Mater. 318 (2016) 751-757. https://doi.org/10.1016/j.jhazmat.2016.06.012
  2. A. Asli, K. Esra, D. Ridvan, Neutron and photon shielding competences of aluminum open-cell foams filled with different epoxy mixtures: an experimental study, Radiat. Phys. Chem. 182 (2021) 109382. https://doi.org/10.1016/j.radphyschem.2021.109382
  3. E.R. Atta, K.M. Zakaria, A.M. Madbouly, Study on polymer clay layered nanocomposites as shielding materials for ionizing radiation, Int. J. Recent Sci. Res. 6 (2015) 4263-4264.
  4. T.A.A. Junior, M.S. Nogueira, V. Vivolo, M.P.A. Potiens, L.L. Campos, Mass attenuation coefficients of X-rays in different barite concrete used in radiation protection as shielding against ionizing radiation, Radiat. Phys. Chem. 140 (2017) 349-354. https://doi.org/10.1016/j.radphyschem.2017.02.054
  5. J. Kaewkhao, J. Laopaiboon, W. Chewpraditkul, Determination of effective atomic numbers and effective electron densities of Cu/Zn alloy, J. Quant. Spectrosc. Radiat. Transf. 109 (2008) 1260-1265. https://doi.org/10.1016/j.jqsrt.2007.10.007
  6. I. Han, L. Demir, Determination of mass attenuation coefficients, effective atomic and electron numbers for Cr, Fe, and Ni alloys at different energies, Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 267 (2009) 3-8. https://doi.org/10.1016/j.nimb.2008.10.004
  7. V.R.K. Murty, D.P. Winkoun, K.R.S. Devan, Effective atomic numbers for W/Cu alloy using transmission experiments, Appl. Radiat. Isot. 53 (2000) 945-948. https://doi.org/10.1016/S0969-8043(00)00248-7
  8. I. Han, L. Demir, M. Sahin, Determination of mass attenuation coefficients, effective atomic and electron numbers for some natural minerals, Radiat. Phys. Chem. 78 (2009) 760-764. https://doi.org/10.1016/j.radphyschem.2009.03.077
  9. D. Mengge, X. Xiangxin, Y. He, L. Zhefu, Highly cost-effective shielding composite made from vanadium slag and boron-rich slag and its properties, Radiat. Phys. Chem. 141 (2017) 239-244. https://doi.org/10.1016/j.radphyschem.2017.07.023
  10. T. Korkut, H. Korkut, A. Karabulut, G. Budak, A new radiation shielding material: amethyst ore, Ann. Nucl. Energy 38 (2011) 56-59. https://doi.org/10.1016/j.anucene.2010.08.017
  11. J. Kaewkhao, P. Limkitjaroenporn, S. Tuscharoen, T. Kittiauchawal, W. Chewpraditkul, P. Limsuwan, Measurement of mass attenuation coefficients of blue sapphire at different photon energy by Compton scattering technique, Appl. Mech. Mater. 103 (2012) 71-75. https://doi.org/10.4028/www.scientific.net/AMM.103.71
  12. O. Icelli, S. Erzeneoglu, M. Saglam, Effective atomic numbers of polypyrrolevia transmission method in the energy range 15.74-40.93 keV, Ann. Nucl. Energy 35 (2008) 432-437. https://doi.org/10.1016/j.anucene.2007.07.007
  13. S.R. Manohara, S.M. Hanagodimath, Effective atomic numbers for photon energy absorption of essential amino acids in the energy range 1-20 MeV, Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 264 (2007) 9-14. https://doi.org/10.1016/j.nimb.2007.08.018
  14. S. Erzeneoglu, O. Icelli, B. Gurbulak, A. Ates, Measurement of mass attenuation coefficients for holmium doped and undoped layered semiconductors InSe at different energies and the validity of mixture rule for crystals around the absorption edge, J. Quant. Spectrosc. Radiat. Transfer 102 (2006) 343-347. https://doi.org/10.1016/j.jqsrt.2005.06.001
  15. U. Cevik, H. Baltas, Measurement of the mass attenuation coefficients and electron densities for BiPbSrCaCuO superconductor at different energies, Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 256 (2007) 619-625. https://doi.org/10.1016/j.nimb.2007.01.131
  16. M.I. Sayyed, M.H.A. Mhareb, Y.S.M. Alajerami, K.A. Mahmoud, Imheidat Mohammad A, A. Fatimh, A. Muna, T. Al-Abdullah, Optical and radiation shielding features for a new series of borate glass samples, Optik 239 (2021) 166790. https://doi.org/10.1016/j.ijleo.2021.166790
  17. M.I. Sayyed, H.A. Aljawhara, K. Ashok, J.F.M. Jecong, I. Akkurt, Optical, mechanical properties of TeO2-CdO-PbO-B2O3 glass systems and radiation shielding investigation using EPICS2017 library, Optik 242 (2021) 167342. https://doi.org/10.1016/j.ijleo.2021.167342
  18. S. Kaewjaeng, S. Kothan, W. Chaiphaksa, N. Chanthima, R. Rajaramakrishna, H.J. Kim, J. Kaewkhao, High transparency La2O3-CaO-B2O3-SiO2 glass for diagnosis x-rays shielding material application, Radiat. Phys. Chem. 160 (2019) 41-47. https://doi.org/10.1016/j.radphyschem.2019.03.018
  19. H.O. Tekin, E. Kavaz, E.E. Altunsoy, O. Kilicoglu, O. Agar, T.T. Erguzel, M.I. Sayyed, An extensive investigation on gamma-ray and neutron attenuation parameters of cobalt oxide and nickel oxide substituted bioactive glasses, Ceram. Int. 45 (2019) 9934-9949. https://doi.org/10.1016/j.ceramint.2019.02.036
  20. G.S. Bhandal, K. Singh, Photon attenuation coefficient and effective atomic number study of cement, Appl. Radiat. Isot. 44 (1993) 1231-1243. https://doi.org/10.1016/0969-8043(93)90070-Q
  21. E. Yilmaz, H. Baltas, E. Kiris, _I. Ustabas, U. Cevik, A.M. El-Khayatt, Gamma-ray and neutron shielding properties of some concrete materials, Ann. Nucl. Energy 38 (2011) 2204-2212. https://doi.org/10.1016/j.anucene.2011.06.011
  22. I. Akkurt, H. Akyildirim, B. Mavi, S. Kilincarslan, C. Basyigit, Gamma-ray shielding properties of concrete including barite at different energies, Prog. Nucl. Energy 52 (2010) 620-623. https://doi.org/10.1016/j.pnucene.2010.04.006
  23. D. Mengge, Z. Suying, X. Xiangxin, F. Xiating, M.I. Sayyed, U. Mayeen, D.A.B. Khandaker, The potential use of boron containing resources for protection against nuclear radiation, Radiat. Phys. Chem. 188 (2021) 109601. https://doi.org/10.1016/j.radphyschem.2021.109601
  24. B. Alaylar, B. Aygun, K. Turhan, G. Karadayi, S. Erdem, V.P.S. Akar, M.I. Sayyed, E. Pelit, A. Karabulut, M. Gulluce, Z. Turgut, M. Isaoglu, Characterization of gamma-ray and neutron radiation absorption properties of synthesized quinoline derivatives and their genotoxic potential, Radiat. Phys. Chem. 184 (2021) 109471. https://doi.org/10.1016/j.radphyschem.2021.109471
  25. G.L. Simmons, An Adjoint Gamma-Ray Moments Computer Code, ADJMOMI.NBS Technical Note 748, National Bureau of Standards, 1973.
  26. A.B. Chilton, C.M. Eisenhauer, G.L. Simmons, Photon point source buildup factors for air, water, and iron, Nucl. Sci. Eng. 73 (1980) 97-107. https://doi.org/10.13182/NSE80-A18714
  27. K. Takeuchi, S. Tanaka, PALLAS-ID (VII). A code for direct integration of transport equation in one-dimensional plane and spherical geometries, JAERIM 84 (1984) 214.
  28. W.R. Nelson, H. Hirayama, D.W.O. Rogers, EGS4 Code System, SLAC-265, Stanford Linear Accelerator Centre, Stanford, California, 1985.
  29. M.I. Sayyed, Y. Elmahroug, B.O. Elbashir, A.M.I. Shams, Gamma-ray shielding properties of SLSeZnO glasses, J. Mater. Sci. Mater. Electron. (2016), https://doi.org/10.1007/s10854-016-6022-z.
  30. V.P. Singh, N.M. Badiger, Shielding efficiency of lead borate and nickel borate glasses for gamma rays and neutrons, Glass Phys. Chem. 3 (2015), 267-283.
  31. Y. Harima, Y. Sakamoto, S. Tonaka, M. Kawai, Validity of the geometric progression formula in approximating gamma-ray buildup factors, Nucl. Sci. Eng. 94 (24) (1986).
  32. ANSI/ANS-6.4.3, Gamma Ray Attenuation Coefficient and Buildup Factors for Engineering Materials, American Nuclear Society, La GrangePark, IL, USA, 1991.
  33. M. Kurudirek, Y. Ozdemir, A comprehensive study on energy absorption and exposure buildup factors for some essential amino acids and carbohydrates in the energy range 0.0015-15 MeV up to 40 mean free path, Nucl. Instrum. Methods Phys. Res. B 269 (2011) 7-19. https://doi.org/10.1016/j.nimb.2010.10.015
  34. Y. Harima, An approximation of gamma buildup factors by modified geometrical progression, Nucl. Sci. Eng. 83 (1983) 299-309. https://doi.org/10.13182/NSE83-A18222
  35. U. Kaur, J.K. Sharma, P.S. Singh, T. Singh, Comparative studies of different concretes on the basis of some photon interaction parameters, Appl. Radiat. Isot. 70 (2012) 233-240. https://doi.org/10.1016/j.apradiso.2011.07.011
  36. V.P. Singh, N.M. Badiger, N. Chanthima, J. Kaewkhao, Evaluation of gamma-ray exposure buildup factors and neutron shielding for bismuth borosilicate glasses, Radiat. Phys. Chem. 98 (14-2) (1 2014). https://doi.org/10.1016/j.radphyschem.2013.12.029
  37. V.P. Singh, M.E. Medhat, N.M. Badiger, A.Z.M. Rahman, Radiation shielding effectiveness of newly developed superconductors, Radiat. Phys. Chem. 175-183 (2015).
  38. P.S. Singh, T. Singh, P. Kaur, Variation of energy absorption buildup factors with incident photon energy and penetration depth for some commonly used solvents, Ann. Nucl. Energy 35 (2008) 1093-1097. https://doi.org/10.1016/j.anucene.2007.10.007
  39. T. Kaur, J. Sharma, T. Singh, Review on scope of metallic alloys in gamma rays shield designing, Prog. Nucl. Energy 113 (2019) 95-113. https://doi.org/10.1016/j.pnucene.2019.01.016
  40. H. Youhua, L. Yimin, H. Hao, L. Jia, T. Xiao, Preparation and mechanical properties of Inconel 718 alloy by metal injection molding, Rare Met. Mater. Eng. 39 (5) (2010) 775-780. https://doi.org/10.1016/S1875-5372(10)60100-2
  41. J. Miao, T.M. Pollock, J.W. Jones, Crystallographic fatigue crack initiation in nickel-based superalloy Rene 88DT at elevated temperature, Acta Mater. 57 (20) (2009) 5964-5974. https://doi.org/10.1016/j.actamat.2009.08.022
  42. Y.I. Lee, N.Y. Kwon, S.T. Oh, Fabrication of Fe-base superalloy powders with yttrium oxide dispersion by mechanical alloying and chemical route, Mater. Lett. 197 (2017) 135-138. https://doi.org/10.1016/j.matlet.2017.03.123
  43. A. Suzuki, F. Wu, H. Murakami, H. Imai, High temperature characteristics of IreTa coated and aluminized Ni-base single crystal superalloys, Sci. Technol. Adv. Mater. 5 (5-6) (2004) 555. https://doi.org/10.1016/j.stam.2004.03.004
  44. A. Simchi, Densification, and microstructural evolution during co-sintering of Ni-base superalloy powders, Metall. Mater. Trans. 37 (8) (2006) 2549-2557. https://doi.org/10.1007/BF02586227
  45. J.R. Hayes, J.J. Gray, A.W. Szmodis, C.A. Orme, Influence of chromium and molybdenum on the corrosion of nickel-based alloys, Corrosion 62 (6) (2006) 491-500. https://doi.org/10.5006/1.3279907
  46. Z. Xu, Y. Xie, M. Ebrahimnia, H. Dang, Effect of B4C nanoparticles on microstructure and properties of laser cladded IN625 coating, Surf. Coating. Technol. 416 (2021) 127154. https://doi.org/10.1016/j.surfcoat.2021.127154
  47. O. Ozgun, H.O. Gulsoy, R. Yilmaz, F. Findik, Microstructural and mechanical characterization of injection molded 718 superalloy powders, J. Alloys Compd. 576 (2013) 140-153. https://doi.org/10.1016/j.jallcom.2013.04.042
  48. M. Xia, D. Gu, C. Ma, H. Chen, H. Zhang, Microstructure evolution, mechanical response and underlying thermodynamic mechanism of multi-phase strengthening WC/Inconel 718 composites using selective laser melting, J. Alloys Compd. 747 (2018) 684-695. https://doi.org/10.1016/j.jallcom.2018.03.049
  49. A.A. Yar, M. Montazerian, H. Abdizadeh, H.R. Baharvandi, Microstructure and mechanical properties of aluminum alloy matrix composite reinforced with nano-particle MgO, J. Alloys Compd. 484 (1-2) (2009) 400-404. https://doi.org/10.1016/j.jallcom.2009.04.117
  50. K. Umanath, K. Palani Kumar, S.T. Selvamani, Analysis of dry sliding wear behaviour of Al6061/SiC/Al2O3 hybrid metal matrix composites, Compos. B Eng. 53 (2013) 159-168. https://doi.org/10.1016/j.compositesb.2013.04.051
  51. S. Karabulut, U. Gokmen, H. Cinici, Study on the mechanical and drilling properties of AA7039 composites reinforced with Al2O3/B4C/SiC particles, Compos. B Eng. 93 (2016) 43-55. https://doi.org/10.1016/j.compositesb.2016.02.054
  52. A. Levet, E. Kavaz, Y. Ozdemir, An experimental study on the investigation of nuclear radiation shielding characteristics in iron-boron alloys, J. Alloys Compd. 819 (2020) 152946. https://doi.org/10.1016/j.jallcom.2019.152946
  53. A. Uzun, E. Asikuzun, U. Gokmen, H. Cinici, Vickers microhardness studies on B4C reinforced/unreinforced foamable aluminium composites, Trans. Indian Inst. Met. 71 (2) (2018) 327-337. https://doi.org/10.1007/s12666-017-1163-1
  54. U. Gokmen, Fabrication and characterization of hot extruded hybrid composites Al 2024 matrix reinforced with B4C/Al2O3, J. Polytech. 19 (4) (2016) 445-453.
  55. B. Buyuk, A.B. Tugrul, A.C. Akarsu, A.O. Addemir, Investigation on the effects of titanium diboride particle size on radiation shielding properties of titanium diboride reinforced boron carbide-silicon carbide composites, J. Nano Electron. Phys. 4 (2012a), 01010-01013.
  56. B. Buyuk, A.B. Tugrul, A.C. Akarsu, A.O. Addemir, Investigation of behaviour of titanium diboride reinforced boron carbide-silicon carbide composites against Cs-137 gamma radioisotope source by using gamma transmission technique, Acta Phys. Pol. A 121 (2012b) 135-137. https://doi.org/10.12693/APhysPolA.121.135
  57. B. Buyuk, A.B. Tugrul, S. Aktop, A.O. Addemir, Investigation on the effects of boron carbide particle size on radiation shielding properties of boron carbide-titanium diboride composites, Acta Phys. Pol. A 123 (2013) 177-179. https://doi.org/10.12693/APhysPolA.123.177
  58. S.R. Manohara, S.M. Hanagodimath, K.S. Thind, L. Gerward, On the effective atomic number and electron density: a comprehensive set of formulas for all types of materials and energies above 1 keV, Nucl. Instrum. Methods Phys. Res., Sect. B 266 (2008) 3906-3912. https://doi.org/10.1016/j.nimb.2008.06.034
  59. Proceedings of the CASeCERN accelerator school: beam injection, extraction and transfer, erice, Italy, 10-19 March, in: B. Holzer (Ed.), CERN Yellow Reports: School Proceedings, 5/2018, 2017. CERN-2018-008-SP (CERN, Geneva, 2018) Particle Interactions with Matter A. Lechner.
  60. A. El-Sayed, M.A.M. Ali, M.R. Ismail, Natural fibre high-density poly-ethylene and lead oxide composites for radiation shielding, Radiat. Phys. Chem. 66 (2003) 185-195. https://doi.org/10.1016/S0969-806X(02)00470-X
  61. L. Gerward, N. Guilbert, K.B. Jensen, H. Levring, X-ray absorption in matter, Reengineering XCOM. J. Radiat. Phys. Chem. 60 (2001) 23-24. https://doi.org/10.1016/S0969-806X(00)00324-8
  62. L. Gerward, N. Guilbert, K.B. Jensen, H. Levring, WinXcom-a program for calculating X-ray attenuation coefficients, J. Radiat. Phys. Chem. 71 (2004) 653-654. https://doi.org/10.1016/j.radphyschem.2004.04.040
  63. Y. Harima, An historical review and current status of buildup factor calculations and application, Radiat. Phys. Chem. 41 (4/5) (1993) 631-672. https://doi.org/10.1016/0969-806X(93)90317-N
  64. E. Sakara, F.O. Ozpola, B. Alim, M.I. Sayyed, M. Kurudirek, Phy-X/PSD: development of a user-friendly online software for calculation of parameters relevant to radiation shielding and dosimetry, Radiat. Phys. Chem. 166 (2020), 108496. https://doi.org/10.1016/j.radphyschem.2019.108496
  65. B. Aygun, G. Budak, A new neutron absorber material: oil loaded paraffin wax, Nucl. Sci. Technol. (2012).
  66. A.B. Chilten, J.K. Shultis, R.E. Faw, Principle of Radiation Shielding, Prentice-Hall, Englewood Cliffs, N.J., 1984.
  67. M.F. Kaplan, Concrete Radiation Shielding, Longman scientific and Technology, Lonman Group UK, Limited, Essex, England., 1989.
  68. F. Akman, I. Ozkan, M.R. Kacal, H. Polat, S.A.M. Issa, H.O. Tekin, O. Agar, Shielding features, to non-ionizing and ionizing photons, of FeCr-based composites, Appl. Radiat. Isot. (2021), https://doi.org/10.1016/j.apradiso.2020.109470.
  69. G. Kilic, S.A.M. Issa, E. Ilik, O. Kilicoglu, H.O. Tekin, A journey for exploration of Eu2O3 reinforcement effect on zinc-borate glasses: synthesis, optical, physical and nuclear radiation shielding properties, Ceram. Int. (2020), https://doi.org/10.1016/j.ceramint.2020.09.103.