과제정보
This research was supported by the Institute for Information & Communications Technology Planning & Evaluation (IITP) grant funded by the Korea government (MSIT) (grant No. 2019-0-00831) and the Korea Atomic Energy Research Institute funded by the Ministry of Science and ICT (2020M2C9A106861712).
참고문헌
- J. Kim, K. Park, J. Hwang, H. Kim, J. Kim, H. Kim, S.-H. Jung, Y. Kim, G. Cho, Efficient design of a Ø2×2 inch NaI(Tl)scintillation detector coupled with a SiPM in an aquatic environment, Nucl. Eng. Technol. 51 (2019), https://doi.org/10.1016/j.net.2019.01.017.
- L. Marques, A. Vale, P. Vaz, State-of-the-art mobile radiation detection systems for different scenarios, Sensors 21 (2021) 1-67, https://doi.org/10.3390/s21041051.
- F.G. Knoll, Radiation Detection and Measurement, third ed. -, Glenn F.pdf, 2000, p. 802.
- T. Burr, M. Hamada, Radio-Isotope identification algorithms for NaI γ spectra, Algorithms 2 (2009) 339-360, https://doi.org/10.3390/a2010339.
- Y. Kim, M. Kim, K.T. Lim, J. Kim, G. Cho, Inverse calibration matrix algorithm for radiation detection portal monitors, Radiat. Phys. Chem. 155 (2019) 127-132, https://doi.org/10.1016/j.radphyschem.2018.07.022.
- H.C. Lee, W.G. Shin, H.J. Park, D.H. Yoo, C. Il Choi, C.S. Park, H.S. Kim, C.H. Min, Validation of energy-weighted algorithm for radiation portal monitor using plastic scintillator, Appl. Radiat. Isot. 107 (2016) 160-164, https://doi.org/10.1016/j.apradiso.2015.10.019.
- J. Kim, K. Park, G. Cho, Multi-radioisotope identification algorithm using an artificial neural network for plastic gamma spectra, Appl. Radiat. Isot. 147 (2019) 83-90, https://doi.org/10.1016/j.apradiso.2019.01.005.
- D. Liang, P. Gong, X. Tang, P. Wang, L. Gao, Z. Wang, R. Zhang, Rapid nuclide identification algorithm based on convolutional neural network, Ann. Nucl. Energy 133 (2019) 483-490, https://doi.org/10.1016/j.anucene.2019.05.051.
- C.-C. Hung, E. Song, Y. Lan, Image Texture Analysis, Springer International Publishing, 2019, https://doi.org/10.1007/978-3-030-13773-1.
- M. Aharon, M. Elad, A. Bruckstein, K-SVD, An algorithm for designing overcomplete dictionaries for sparse representation, IEEE Trans. Signal Process. 54 (2006) 4311-4322, https://doi.org/10.1109/TSP.2006.881199.
- Z. Jiang, Z. Lin, L.S. Davis, Label consistent K-SVD: learning a discriminative dictionary for recognition, IEEE Trans. Pattern Anal. Mach. Intell. 35 (2013) 2651-2664, https://doi.org/10.1109/TPAMI.2013.88.
- D.B. Pelowitz, J.T. Goorley, M.R. James, T.E. Booth, F.B. Brown, J.S. Bull, L.J. Cox, J.W. Durkee, J.S. Elson, M.L. Fensin, R.A. Forster, J.S. Hendricks, H.G. Hughes, R.C. Johns, B.C. Kiedrowski, S.G. Mashnik, MCNP6 User's Manual, 2013.
- G. Davis, S. Mallat, M. Avellaneda, Adaptive greedy approximations, Constr, Approx 13 (1997) 57-98, https://doi.org/10.1007/BF02678430.
- T.T. Cai, L. Wang, Orthogonal Matching Pursuit for Sparse Signal Recovery With Noise 57 (2011) 4680-4688. https://doi.org/10.1109/TIT.2011.2146090
- I. Kviatkovsky, M. Gabel, E. Rivlin, I. Shimshoni, On the equivalence of the LC-KSVD and the D-KSVD algorithms, IEEE Trans. Pattern Anal. Mach. Intell. 39 (2017) 411-416, https://doi.org/10.1109/TPAMI.2016.2545661.
- Z. Jiang, Z. Lin, L.S. Davis, Learning A Discriminative Dictionary for Sparse Coding via Label Consistent K-SVD, n.D.
- C. Kim, Y. Kim, M. Moon, G. Cho, Iterative Monte Carlo simulation with the Compton kinematics-based GEB in a plastic scintillation detector, Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip. 795 (2015) 298-304, https://doi.org/10.1016/j.nima.2015.06.007.
- R. Casanovas, J.J. Morant, M. Salvado, Temperature peak-shift correction methods for NaI(Tl) and LaBr 3(Ce) gamma-ray spectrum stabilisation, Radiat. Meas. 47 (2012) 588-595, https://doi.org/10.1016/j.radmeas.2012.06.001.
- S. Buranurak, C.E. Andersen, A.R. Beierholm, L.R. Lindvold, Temperature variations as a source of uncertainty in medical fiber-coupled organic plastic scintillator dosimetry, Radiat. Meas. 56 (2013) 307-311, https://doi.org/10.1016/j.radmeas.2013.01.049.
- J. Kim, K.T. Lim, J. Kim, C. jong Kim, B. Jeon, K. Park, G. Kim, H. Kim, G. Cho, Quantitative analysis of NaI(Tl) gamma-ray spectrometry using an artificial neural network, Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip. 944 (2019), https://doi.org/10.1016/j.nima.2019.162549.
- G.C.J. Kim, K.T. Lim, K. Ko, E. Ko, Radioisotope Identification and Nonintrusive Depth Estimation of Localized Low-Level Radioactive Contaminants Using Bayesian Inference, Sensors (Switzerland), 2020, p. 20.
- M.A. El Khaddar, H. Harroud, M. Boulmalf, M. Elkoutbi, A. Habbani, Emerging wireless technologies in e-health: trends, challenges, and framework design issues, in: Int. Conf. Multimed. Comput. Syst. ICMCS 2012, 2012, pp. 440-445, https://doi.org/10.1109/ICMCS.2012.6320276.
- J. Makhoul, S. Roucos, H. Gish, Vector quantization in speech coding, Proc. IEEE 73 (1985) 1551-1588, https://doi.org/10.1109/PROC.1985.13340.
- W.W. Chang, H. Tan, D.Y. Wang, Robust vector quantization for wireless channels, IEEE J. Sel. Areas Commun. 19 (2001) 1365-1373, https://doi.org/10.1109/49.932703.