References
- G. Aranda, A.J. Grootjes, C.M. Van der Meijden, A. Van der Drift, D.F. Gupta, R.R. Sonde, S. Poojari, C.B. Mitra, Conversion of high-ash coal under steam and CO2 gasification conditions, Fuel Process. Technol. 141 (2016) 16-30. https://doi.org/10.1016/j.fuproc.2015.06.006
- I. Dincer, Renewable energy and sustainable development: a crucial review, Renew. Sustain. Energy Rev. 4 (2) (2000) 157-175. https://doi.org/10.1016/S1364-0321(99)00011-8
- I. Dincer, C. Acar, Review and evaluation of hydrogen production methods for better sustainability, Int. J. Hydrogen Energy 40 (34) (2015) 11094-11111. https://doi.org/10.1016/j.ijhydene.2014.12.035
- I. Dincer, C. Zamfirescu, Sustainable hydrogen production options and the role of IAHE, Int. J. Hydrogen Energy 37 (21) (2012) 16266-16286. https://doi.org/10.1016/j.ijhydene.2012.02.133
- J. Uebbing, L.K. Rihko-Struckmann, K. Sundmacher, Exergetic assessment of CO2 methanation processes for the chemical storage of renewable energies, Appl. Energy 233 (2019) 271-282. https://doi.org/10.1016/j.apenergy.2018.10.014
- N. Norouzi, Assessment of technological path of hydrogen energy industry development: a review, Iranian (Iranica) Journal of Energy & Environment 12 (4) (2021) 273-284. https://doi.org/10.5829/IJEE.2021.12.04.01
- A. Haryanto, S. Fernando, N. Murali, S. Adhikari, Current status of hydrogen production techniques by steam reforming of ethanol: a review, Energy Fuel. 19 (5) (2005) 2098-2106. https://doi.org/10.1021/ef0500538
- S. Heidenreich, P.U. Foscolo, New concepts in biomass gasification, Prog. Energy Combust. Sci. 46 (2015) 72-95. https://doi.org/10.1016/j.pecs.2014.06.002
- C. Higman, S. Tam, Advances in coal gasification, hydrogenation, and gas treating for the production of chemicals and fuels, Chem. Rev. 114 (3) (2014) 1673-1708. https://doi.org/10.1021/cr400202m
- R. Hino, Hydrogen production by thermochemical cycle using nuclear heat, Nippon Enerugi Gakkai-Shi 88 (5) (2009) 385-390.
- N. Norouzi, 4E analysis of a fuel cell and gas turbine hybrid energy system, Biointerface Res. Appl. Chem. 11 (2021) 7568-7579. https://doi.org/10.33263/briac111.75687579
- J.D. Holladay, J. Hu, D.L. King, Y. Wang, An overview of hydrogen production technologies, Catal. Today 139 (4) (2009) 244-260. https://doi.org/10.1016/j.cattod.2008.08.039
- S.E. Hosseini, M.A. Wahid, Hydrogen production from renewable and sustainable energy resources: promising green energy carrier for clean development, Renew. Sustain. Energy Rev. 57 (2016) 850-866. https://doi.org/10.1016/j.rser.2015.12.112
- T. Kato, Present status of hydrogen production by electrolysis, Nihon Enerugi Gakkaishi J Jpn Inst Energy 88 (2009) 371-377.
- G. Nahar, V. Dupont, Recent advances in hydrogen production via autothermal reforming process (ATR): a review of patents and research articles, Recent Pat. Chem. Eng. 6 (1) (2013) 8-42. https://doi.org/10.2174/2211334711306010003
- N. Norouzi, Thermodynamic and irreversibility analysis of the use of hydrogen for the energy conversion of Fossil fuel in power plants, J. Appl. Dynamic Syst. Control 4 (1) (2021) 97-107.
- K. Nath, D. Das, Production and storage of hydrogen: present scenario and future perspective, J. Sci. Ind. Res. (India) 66 (9) (2007) 701-709.
- A. Ozbilen, I. Dincer, M.A. Rosen, A comparative life cycle analysis of hydrogen production via thermochemical water splitting using a CueCl cycle, Int. J. Hydrogen Energy 36 (17) (2011) 11321-11327. https://doi.org/10.1016/j.ijhydene.2010.12.035
- W. Wang, Y. Cao, Combined carbon dioxide reforming with steam reforming of ethanol for hydrogen production: Thermodynamic analysis, Int. J. Green Energy 9 (6) (2012) 503-516. https://doi.org/10.1080/15435075.2011.622024
- S. Dunn, Hydrogen futures: toward a sustainable energy system, Int. J. Hydrogen Energy 27 (3) (2002) 235-264. https://doi.org/10.1016/S0360-3199(01)00131-8
- N. Norouzi, The Pahlev Reliability Index: a measurement for the resilience of power generation technologies versus climate change, Nuclear Eng. Technol. 53 (5) (2021) 1658-1663. https://doi.org/10.1016/j.net.2020.10.013
- A. Dadak, M. Aghbashlo, M. Tabatabaei, H. Younesi, G. Najafpour, Exergy-based sustainability assessment of continuous photobiological hydrogen production using anaerobic bacterium Rhodospirillum rubrum, J. Clean. Prod. 139 (2016) 157-166. https://doi.org/10.1016/j.jclepro.2016.08.020
- A. Abu-Rayash, I. Dincer, Development of integrated sustainability performance indicators for better management of smart cities, Sustain. Cities Soc. 67 (2021), 102704. https://doi.org/10.1016/j.scs.2020.102704
- A. Valente, D. Iribarren, J. Dufour, Comparative life cycle sustainability assessment of renewable and conventional hydrogen, Sci. Total Environ. 756 (2021), 144132. https://doi.org/10.1016/j.scitotenv.2020.144132
- O. Sarkar, R. Katakojwala, S.V. Mohan, Low carbon hydrogen production from a waste-based biorefinery system and environmental sustainability assessment, Green Chem. 23 (1) (2021) 561-574. https://doi.org/10.1039/d0gc03063e
- W. Li, X. Ren, S. Ding, L. Dong, A multi-criterion decision making for sustainability assessment of hydrogen production technologies based on objective grey relational analysis, Int. J. Hydrogen Energy 45 (59) (2020) 34385-34395. https://doi.org/10.1016/j.ijhydene.2019.11.039
- X. Ren, W. Li, S. Ding, L. Dong, Sustainability assessment and decision making of hydrogen production technologies: a novel two-stage multi-criteria decision making method, Int. J. Hydrogen Energy 45 (59) (2020) 34371-34384. https://doi.org/10.1016/j.ijhydene.2019.12.134
- N. Norouzi, Technical and economic and exergy feasibility of combined production of electricity and Hydrogen using photovoltaic energy, J. Appl. Dynamic Sys. Control 4 (1) (2021) 79-88.
- H. Khajehpour, N. Norouzi, M. Fani, An exergetic model for the ambient air temperature impacts on the combined power plants and its management using the genetic algorithm, Int. J. Air-Condition. Refrig. 29 (1) (2021), 2150008. https://doi.org/10.1142/S2010132521500085
- A. Chen, C. Liu, Y. Liu, L. Zhang, Uranium thermochemical cycle used for hydrogen production, Nuclear Eng. Technol. 51 (1) (2019) 214-220. https://doi.org/10.1016/j.net.2018.08.018
- S. Mandal, A.K. Jana, Simulating reactive distillation of HIx (HI-H2O-I2) system in Sulphur-Iodine cycle for hydrogen production, Nuclear Eng. Technol. 52 (2) (2020) 279-286. https://doi.org/10.1016/j.net.2019.07.033
- L.C. Juarez-Martinez, G. Espinosa-Paredes, A. Vazquez-Rodriguez, H. Romero-Paredes, Energy optimization of a Sulfur-Iodine thermochemical nuclear hydrogen production cycle, Nuclear Eng. Technol. 53 (6) (2021) 2066-2073. https://doi.org/10.1016/j.net.2020.12.014