Acknowledgement
This work was supported by a National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIT) (NRF-2017M2B2B1072806). This work was also supported by the "Human Resources Program in Energy Technology" of the Korea Institute of Energy Technology Evaluation and Planning (KETEP), granted financial resources from the Ministry of Trade, Industry Energy, Republic of Korea (No. 20214000000070).
References
- Kenneth Geelhood, Walter G. Luscher, Patrick A. Raynaud, Ian E. Porter, FRAPCON-4.0: A Computer Code for the Calculation of Steady-State Thermal-Mechanical Behavior of Oxide Fuel Rods for High Burn-Up, vol. 1, Pacific Northwest National Laboratory-19418, Richland, Washington, 2015.
- P.G. Lucuta, Hj Matzke, I.J. Hastings, A pragmatic approach to modelling thermal conductivity of irradiated UO2 fuel: review and recommendations, J. Nucl. Mater. 232 (1996) 166-180. https://doi.org/10.1016/S0022-3115(96)00404-7
- Michael R. Tonks, Xiang-Yang Liu, David Andersson, Danielle Perez, Aleksandr Chernatynskiy, Giovanni Pastore, Christopher R. Stanek, Richard Williamson, Development of a multiscale thermal conductivity model for fission gas in UO2, J. Nucl. Mater. 469 (2016) 89-98. https://doi.org/10.1016/j.jnucmat.2015.11.042
- Tianyi Chen, Di Chen, Bulent H. Sencer, Lin Shao, Molecular dynamics simulations of grain boundary thermal resistance in UO2, J. Nucl. Mater. 452 (2014) 364-369. https://doi.org/10.1016/j.jnucmat.2014.05.035
- C.-W. Lee, Aleksandr Chernatynskiy, Priyank Shukla, R.E. Stoller, Susan B. Sinnott, Simon Robert Phillpot, Effect of pores and He bubbles on the thermal transport properties of UO2 by molecular dynamics simulation, J. Nucl. Mater. 456 (2015) 253-259. https://doi.org/10.1016/j.jnucmat.2014.09.052
- Weiming Chen, Michael W.D. Cooper, Ziqi Xiao, David A. Andersson, Xian-Ming Bai, Effect of Xe bubble size and pressure on the thermal conductivity of UO2-a molecular dynamics study, J. Mater. Res. 34 (2019) 2295-2305. https://doi.org/10.1557/jmr.2019.93
- Paul C. Millett, Michael R. Tonks, Meso-scale modeling of the influence of intergranular gas bubbles on effective thermal conductivity, J. Nucl. Mater. 412 (2011) 281-286. https://doi.org/10.1016/j.jnucmat.2011.02.040
- Paul C. Millett, Michael R. Tonks, K. Chockalingam, Yongfeng Zhang, S.B. Biner, Three dimensional calculations of the effective Kapitza resistance of UO2 grain boundaries containing intergranular bubbles, J. Nucl. Mater. 439 (2013) 117-122. https://doi.org/10.1016/j.jnucmat.2013.02.039
- Linyun Liang, Yeon Soo Kim, Zhi-Gang Mei, Larry K. Aagesen, Abdellatif M. Yacout, Fission gas bubbles and recrystallization-induced degradation of the effective thermal conductivity in U-7Mo fuels, J. Nucl. Mater. 511 (2018) 438-445. https://doi.org/10.1016/j.jnucmat.2018.09.054
- Bohyun Yoon, Kunok Chang, Effect of the pore radius on the effective conductivity of UO2 in 2D and 3D: a computational approach, Results in physics 19 (2020) 103440. https://doi.org/10.1016/j.rinp.2020.103440
- D.R. Olander, Fundamental Aspects of Nuclear Reactor Fuel Elements, U.S. Energy Research and Development Administration, Dept. of energy, National technical information service, springfield, VA, 1976.
- S.K. Rhee, Porosity-thermal conductivity correlations for ceramic materials, Mater. Sci. Eng. 20 (1975) 89-93. https://doi.org/10.1016/0025-5416(75)90134-2
- G. Ondracek, B. Schulz, The porosity dependence of the thermal conductivity for nuclear fuels, J. Nucl. Mater. 46 (1973) 253-258. https://doi.org/10.1016/0022-3115(73)90039-1
- Long-Qing Chen, Wei Yang, Computer simulation of the domain dynamics of a quenched system with a large number of nonconserved order parameters: the grain-growth kinetics, Phys. Rev. B 50 (1994) 15752. https://doi.org/10.1103/physrevb.50.15752
- Srikanth Vedantam, B.S.V. Patnaik, Efficient numerical algorithm for multiphase field simulations, Phys. Rev. 73 (2006), 016703.
- Nele Moelans, Bart Blanpain, Patrick Wollants, A phase field model for the simulation of grain growth in materials containing finely dispersed incoherent second-phase particles, Acta Mater. 53 (2005) 1771-1781. https://doi.org/10.1016/j.actamat.2004.12.026
- L. Dagum, R. Menon, OpenMP: an industry standard API for shared-memory programming, IEEE Comput. Sci. Eng. 5 (1998) 46-55. https://doi.org/10.1109/99.660313
- D. Fan, L.-Q. Chen, Computer simulation of grain growth using a continuum field model, Acta Mater. 45 (1997) 611-622. https://doi.org/10.1016/S1359-6454(96)00200-5
- Paul C. Millett, Dieter Wolf, Tapan Desai, Srujan Rokkam, Anter El-Azab, Phase-field simulation of thermal conductivity in porous polycrystalline microstructures, J. Appl. Phys. 104 (2008), 033512. https://doi.org/10.1063/1.2964116
- J.H. Harding, D.G. Martin, A recommendation for the thermal conductivity of UO2, J. Nucl. Mater. 166 (1989) 223-226. https://doi.org/10.1016/0022-3115(89)90218-3
- Ho-Soon Yang, G.-R. Bai, L.J. Thompson, Jeffrey A. Eastman, Interfacial thermal resistance in nanocrystalline yttria-stabilized zirconia, Acta Mater. 50 (2002) 2309-2317. https://doi.org/10.1016/S1359-6454(02)00057-5