DOI QR코드

DOI QR Code

Effective thermal conductivity model of porous polycrystalline UO2: A computational approach

  • Yoon, Bohyun (Department of Nuclear Engineering, Kyung Hee University) ;
  • Chang, Kunok (Department of Nuclear Engineering, Kyung Hee University)
  • Received : 2021.05.10
  • Accepted : 2021.10.27
  • Published : 2022.05.25

Abstract

The thermal conductivity of uranium oxide (UO2) containing pores and grain boundaries is investigated using continuum-level simulations based on the finite-difference method in two and three dimensions. Steady-state heat conduction is solved on microstructures generated from the phase-field model of the porous polycrystal to calculate the effective thermal conductivity of the domain. The effects of porosity, pore size, and grain size on the effective thermal conductivity of UO2 are quantified. Using simulation results, a new empirical model is developed to predict the effective thermal conductivity of porous polycrystalline UO2 fuel as a function of porosity and grain size.

Keywords

Acknowledgement

This work was supported by a National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIT) (NRF-2017M2B2B1072806). This work was also supported by the "Human Resources Program in Energy Technology" of the Korea Institute of Energy Technology Evaluation and Planning (KETEP), granted financial resources from the Ministry of Trade, Industry Energy, Republic of Korea (No. 20214000000070).

References

  1. Kenneth Geelhood, Walter G. Luscher, Patrick A. Raynaud, Ian E. Porter, FRAPCON-4.0: A Computer Code for the Calculation of Steady-State Thermal-Mechanical Behavior of Oxide Fuel Rods for High Burn-Up, vol. 1, Pacific Northwest National Laboratory-19418, Richland, Washington, 2015.
  2. P.G. Lucuta, Hj Matzke, I.J. Hastings, A pragmatic approach to modelling thermal conductivity of irradiated UO2 fuel: review and recommendations, J. Nucl. Mater. 232 (1996) 166-180. https://doi.org/10.1016/S0022-3115(96)00404-7
  3. Michael R. Tonks, Xiang-Yang Liu, David Andersson, Danielle Perez, Aleksandr Chernatynskiy, Giovanni Pastore, Christopher R. Stanek, Richard Williamson, Development of a multiscale thermal conductivity model for fission gas in UO2, J. Nucl. Mater. 469 (2016) 89-98. https://doi.org/10.1016/j.jnucmat.2015.11.042
  4. Tianyi Chen, Di Chen, Bulent H. Sencer, Lin Shao, Molecular dynamics simulations of grain boundary thermal resistance in UO2, J. Nucl. Mater. 452 (2014) 364-369. https://doi.org/10.1016/j.jnucmat.2014.05.035
  5. C.-W. Lee, Aleksandr Chernatynskiy, Priyank Shukla, R.E. Stoller, Susan B. Sinnott, Simon Robert Phillpot, Effect of pores and He bubbles on the thermal transport properties of UO2 by molecular dynamics simulation, J. Nucl. Mater. 456 (2015) 253-259. https://doi.org/10.1016/j.jnucmat.2014.09.052
  6. Weiming Chen, Michael W.D. Cooper, Ziqi Xiao, David A. Andersson, Xian-Ming Bai, Effect of Xe bubble size and pressure on the thermal conductivity of UO2-a molecular dynamics study, J. Mater. Res. 34 (2019) 2295-2305. https://doi.org/10.1557/jmr.2019.93
  7. Paul C. Millett, Michael R. Tonks, Meso-scale modeling of the influence of intergranular gas bubbles on effective thermal conductivity, J. Nucl. Mater. 412 (2011) 281-286. https://doi.org/10.1016/j.jnucmat.2011.02.040
  8. Paul C. Millett, Michael R. Tonks, K. Chockalingam, Yongfeng Zhang, S.B. Biner, Three dimensional calculations of the effective Kapitza resistance of UO2 grain boundaries containing intergranular bubbles, J. Nucl. Mater. 439 (2013) 117-122. https://doi.org/10.1016/j.jnucmat.2013.02.039
  9. Linyun Liang, Yeon Soo Kim, Zhi-Gang Mei, Larry K. Aagesen, Abdellatif M. Yacout, Fission gas bubbles and recrystallization-induced degradation of the effective thermal conductivity in U-7Mo fuels, J. Nucl. Mater. 511 (2018) 438-445. https://doi.org/10.1016/j.jnucmat.2018.09.054
  10. Bohyun Yoon, Kunok Chang, Effect of the pore radius on the effective conductivity of UO2 in 2D and 3D: a computational approach, Results in physics 19 (2020) 103440. https://doi.org/10.1016/j.rinp.2020.103440
  11. D.R. Olander, Fundamental Aspects of Nuclear Reactor Fuel Elements, U.S. Energy Research and Development Administration, Dept. of energy, National technical information service, springfield, VA, 1976.
  12. S.K. Rhee, Porosity-thermal conductivity correlations for ceramic materials, Mater. Sci. Eng. 20 (1975) 89-93. https://doi.org/10.1016/0025-5416(75)90134-2
  13. G. Ondracek, B. Schulz, The porosity dependence of the thermal conductivity for nuclear fuels, J. Nucl. Mater. 46 (1973) 253-258. https://doi.org/10.1016/0022-3115(73)90039-1
  14. Long-Qing Chen, Wei Yang, Computer simulation of the domain dynamics of a quenched system with a large number of nonconserved order parameters: the grain-growth kinetics, Phys. Rev. B 50 (1994) 15752. https://doi.org/10.1103/physrevb.50.15752
  15. Srikanth Vedantam, B.S.V. Patnaik, Efficient numerical algorithm for multiphase field simulations, Phys. Rev. 73 (2006), 016703.
  16. Nele Moelans, Bart Blanpain, Patrick Wollants, A phase field model for the simulation of grain growth in materials containing finely dispersed incoherent second-phase particles, Acta Mater. 53 (2005) 1771-1781. https://doi.org/10.1016/j.actamat.2004.12.026
  17. L. Dagum, R. Menon, OpenMP: an industry standard API for shared-memory programming, IEEE Comput. Sci. Eng. 5 (1998) 46-55. https://doi.org/10.1109/99.660313
  18. D. Fan, L.-Q. Chen, Computer simulation of grain growth using a continuum field model, Acta Mater. 45 (1997) 611-622. https://doi.org/10.1016/S1359-6454(96)00200-5
  19. Paul C. Millett, Dieter Wolf, Tapan Desai, Srujan Rokkam, Anter El-Azab, Phase-field simulation of thermal conductivity in porous polycrystalline microstructures, J. Appl. Phys. 104 (2008), 033512. https://doi.org/10.1063/1.2964116
  20. J.H. Harding, D.G. Martin, A recommendation for the thermal conductivity of UO2, J. Nucl. Mater. 166 (1989) 223-226. https://doi.org/10.1016/0022-3115(89)90218-3
  21. Ho-Soon Yang, G.-R. Bai, L.J. Thompson, Jeffrey A. Eastman, Interfacial thermal resistance in nanocrystalline yttria-stabilized zirconia, Acta Mater. 50 (2002) 2309-2317. https://doi.org/10.1016/S1359-6454(02)00057-5