DOI QR코드

DOI QR Code

Overview of CSNS tantalum cladded tungsten solid Target-1 and Target-2

  • Wei, Shaohong (Institute of High Energy Physics, Chinese Academy of Sciences (CAS)) ;
  • Zhang, Ruiqiang (Institute of High Energy Physics, Chinese Academy of Sciences (CAS)) ;
  • Ji, Quan (Institute of High Energy Physics, Chinese Academy of Sciences (CAS)) ;
  • Li, Changfeng (Institute of High Energy Physics, Chinese Academy of Sciences (CAS)) ;
  • Zhou, Bin (Institute of High Energy Physics, Chinese Academy of Sciences (CAS)) ;
  • Lu, Youlian (Institute of High Energy Physics, Chinese Academy of Sciences (CAS)) ;
  • Xu, Jun (Institute of High Energy Physics, Chinese Academy of Sciences (CAS)) ;
  • Zhou, Ke (Institute of High Energy Physics, Chinese Academy of Sciences (CAS)) ;
  • Zhao, Chongguang (Institute of High Energy Physics, Chinese Academy of Sciences (CAS)) ;
  • He, Ning (Institute of High Energy Physics, Chinese Academy of Sciences (CAS)) ;
  • Yin, Wen (Institute of High Energy Physics, Chinese Academy of Sciences (CAS)) ;
  • Liang, Tianjiao (Institute of High Energy Physics, Chinese Academy of Sciences (CAS))
  • Received : 2021.04.11
  • Accepted : 2021.10.20
  • Published : 2022.05.25

Abstract

A solid tungsten target was used at the China Spallation Neutron Source (CSNS) with 100 kW proton beam power. To improve the lifetime, hot isostatic pressing (HIP) process was selected to bond tantalum cladding with tungsten plates. Radioactive isotope 182Ta, an activation product of tantalum, was found in the cooling water after a period of operation, however, no radioactive isotopes of 187W was found, which shows the tantalum layer remained mostly intact. The CSNS Target-1 had been operating safely for three years and was replaced by Target-2 in August 2020.

Keywords

Acknowledgement

This paper is supported by the Joint Funds of the National Natural Science Foundation of China (U1932219), the National Key R&D Program of China (2016YFA0401504), the Program for Guang-dong Introducing Innovative and Entrepreneurial Teams (2017ZT07S225) and Science, the Technology Innovation project of Institute of High Energy Physics Chinese Academy of Sciences(2020)-High power target material and its irradiation effects and National Key Research and Development Program of China (2017YFE0106100).

References

  1. H.S. Chen, X.L. Wang, China's first pulsed neutron source, Nat. Mater. 15 (2016) 689-691. https://doi.org/10.1038/nmat4655
  2. J.W. Thomason, The ISIS spallation neutron and muon source-the first thirty-three years, Nucl. Instrum. Methods Phys. Res. A. 917 (2019) 61-67. https://doi.org/10.1016/j.nima.2018.11.129
  3. T. McManamy, A. Crabtree, et al., Overview of the SNS target system testing and initial beam operation experience, J. Nucl. Mater. 377 (2008) 1-11. https://doi.org/10.1016/j.jnucmat.2008.02.024
  4. M. Futakawa, K. Haga, et al., Development of the Hg target in the J-PARC neutron source, Nucl. Instrum. Methods Phys. Res. 600 (2009) 18-21. https://doi.org/10.1016/j.nima.2008.11.103
  5. F.W. Wang, T.J. Liang, W. Yin, et al., Physical design of target station and neutron instruments for China spallation neutron source, Sci. China Phys. Mech. Astron. 56 (2013) 2401.
  6. B.J. Vevera, D.A. McClintock, et al., Characterization of irradiated AISI 316L stainless steel disks removed from the Spallation Neutron Source, J. Nucl. Mater. 450 (2014) 147-162. https://doi.org/10.1016/j.jnucmat.2014.02.035
  7. L.K. Mansur, Materials research and development for the spallation neutron source mercury target, J. Nucl. Mater. 318 (2003) 14-25. https://doi.org/10.1016/S0022-3115(03)00075-8
  8. L.K. Mansur, J.R. Haines, Status of the Spallation Neutron with focus on target materials, J. Nucl. Mater. 356 (2006) 1-15. https://doi.org/10.1016/j.jnucmat.2006.05.031
  9. S.A. Maloy, M.R. James, et al., Comparison of fission neutron and proton/spallation neutron irradiation effects on the tensile behavior of type 316 and 304 stainless steel, J. Nucl. Mater. 318 (2003) 283-291. https://doi.org/10.1016/S0022-3115(03)00087-4
  10. S.H. Wei, Q. J, et al., Advance of CSNS sold target, Mater. Sci. Forum 1024 (2021) 151-155. https://doi.org/10.4028/www.scientific.net/MSF.1024.151
  11. D.J. Findlay, G.P. Skoro, et al., Measurement and calculation of decay heat in ISIS spallation neutron target, Nucl. Instrum. Methods Phys. Res. A 908 (2018) 91-96. https://doi.org/10.1016/j.nima.2018.08.007
  12. P. Vontobel, M. Tamaki, et al., Post-irradiation analysis of SINQ target rods by thermal neutron radiography, J. Nucl. Mater. 356 (2006) 162-167. https://doi.org/10.1016/j.jnucmat.2006.05.033
  13. S.A. Maloy, R.S. Lillard, et al., Water corrosion measurements on tungsten irradiated with high energy protons and spallation neutrons, J. Nucl. Mater. 431 (2012) 140-146. https://doi.org/10.1016/j.jnucmat.2011.11.052
  14. M. Kawai, M. Furusaka, et al., R&D of A MW-class solid-target for a spallation neutron source, J. Nucl. Mater. 318 (2003) 38-55. https://doi.org/10.1016/S0022-3115(03)00114-4
  15. A.T. Nelson, J.A. O Toole, et al., Fabrication of a tantalum-clad tungsten target for LANSCE, J. Nucl. Mater. 431 (2012) 172-184. https://doi.org/10.1016/j.jnucmat.2011.11.041
  16. M. Kawai, K. Kikuchi, et al., Fabrication of a tantalum-clad tungsten target for KENS, J. Nucl. Mater. 296 (2001) 312-320. https://doi.org/10.1016/S0022-3115(01)00533-5
  17. J.F. Li, M. Kawai, Strength proof evaluation of diffusion-jointed W/Ta interfaces by small punch test, J. Nucl. Mater. 321 (2003) 129-134. https://doi.org/10.1016/S0022-3115(03)00237-X
  18. G.J. Burns, A. Dey, et al., Towards an understanding of erosion in ISIS TS-2 spallation neutron targets? Nucl. Instrum. Methods Phys. Res. B 478 (2020) 158-162. https://doi.org/10.1016/j.nimb.2020.06.006
  19. S. Zhuang, Q. Wu, et al., Radionuclides in target station coolant in the China spallation neutron source, Appl. Radiat. Isot. 168 (2021) 109523-109528. https://doi.org/10.1016/j.apradiso.2020.109523
  20. A. Dey, L. Jones, Strategies to improve ISIS TS2 target life, J. Nucl. Mater. 506 (2018) 63-70. https://doi.org/10.1016/j.jnucmat.2017.12.044
  21. J. Chen, X. D Peng, et al., Influence of high dose γ irradiation on the calibration characteristics of type K mineral-insulated metal-sheathed thermocouples, J. Alloys Compd. 696 (2017) 1046-1052. https://doi.org/10.1016/j.jallcom.2016.12.091